

Definition, Equation of the Circle

Basic Level

	(a) 0	(b) 1	(c) 2	(d) None of these
2.	Locus of a point which moves	such that sum of the squares of its dis	stances from the sides of a square of	f side unity is 9, is [IIT 1976
	(a) Straight line	(b) Circle	(c) Parabola	(d) None of these

The two points A and B in a plane such that for all points P lies on circle satisfied $\frac{PA}{PB} = k$, then k will not be equal to

3. The equation of the circle which touches both the axes and whose radius is a, is [MP PET 1984]

[IIT 1982]

(a)
$$x^2 + y^2 - 2ax - 2ay + a^2 = 0$$

(b)
$$x^2 + y^2 + ax + ay - a^2 = 0$$

(c)
$$x^2 + y^2 + 2ax + 2ay - a^2 = 0$$

(d)
$$x^2 + y^2 - ax - ay + a^2 = 0$$

ABCD is a square the length of whose side is a. Taking AB and AD as the coordinate axes, the equation of the circle passing through the vertices of the square, is [MP PET 2003]

(a)
$$x^2 + y^2 + ax + ay = 0$$
 (b) $x^2 + y^2 - ax - ay = 0$

1.

(b)
$$x^2 + y^2 - ax - ay = 0$$

(c)
$$x^2 + y^2 + 2ax + 2ay = 0$$
 (d) $x^2 + y^2 - 2ax - 2ay = 0$

(d)
$$x^2 + y^2 - 2ax - 2ay = 0$$

5. The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is

[Rajasthan PET 1991; MP PET 1987, 1989]

(a)
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 1 = 0$$

(c)
$$x^2 + y^2 - 2x - 2y = 0$$

(d) None of these

The equation of the circle which touches both axes and whose centre is (x_1, y_1) , is 6.

[MP PET 1988]

(a)
$$x^2 + y^2 + 2x_1(x+y) + x_1^2 = 0$$

(b)
$$x^2 + y^2 - 2x_1(x+y) + x_1^2 = 0$$

(c)
$$x^2 + y^2 = x_1^2 + y_1^2$$

(d)
$$x^2 + y^2 + 2xx_1 + 2yy_1 = 0$$

7. The equation of the circle which touches x-axis and whose centre is (1, 2), is

IMP PET 19841

(a)
$$x^2 + y^2 - 2x + 4y + 1 = 0$$

(b)
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

(c)
$$x^2 + y^2 + 2x + 4y + 1 = 0$$

(d)
$$x^2 + y^2 + 4x + 2y + 4 = 0$$

The equation of the circle having centre (1, -2) and passing through the point of intersection of lines 3x + y = 14, 2x + 5y = 18 is

[MP PET 1990]

(a)
$$x^2 + y^2 - 2x + 4y - 20 = 0$$

(b)
$$x^2 + y^2 - 2x - 4y - 20 = 0$$

(c)
$$x^2 + y^2 + 2x - 4y - 20 = 0$$

(d)
$$x^2 + y^2 + 2x + 4y - 20 = 0$$

9. The equation of the circle passing through (4, 5) and having the centre at (2, 2), is [MNR 1986; MP PET 1984; UPSEAT 2000]

(a)
$$x^2 + y^2 + 4x + 4y - 5 = 0$$

(b)
$$x^2 + y^2 - 4x - 4y - 5 = 0$$

(c)
$$x^2 + y^2 - 4x = 13$$

(d)
$$x^2 + y^2 - 4x - 4y + 5 = 0$$

The equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y - 4x + 3 = 0, is 10.

[Rajasthan PET 1985; MP PET 1989]

(a)
$$x^2 + y^2 + 4x - 10y + 25 = 0$$

(b)
$$x^2 + y^2 - 4x - 10y + 25 = 0$$

(c)
$$x^2 + y^2 - 4x - 10y + 16 = 0$$

(d)
$$x^2 + y^2 - 14y + 8 = 0$$

11. The equation of the circle passing through the points (0, 0), (0, b) and (a, b) is [AMU 1978]

[MP PET 1993]

(d) f = g and c = 0

14.	The equation of the circle which touches x -axis at $(3, 0)$ and passes	s through $(1, 4)$ is given by	[MP PET 1993]
	(a) $x^2 + y^2 - 6x - 5y + 9 = 0$	(b) $x^2 + y^2 + 6x + 5y - 9 = 0$	
	(c) $x^2 + y^2 - 6x + 5y - 9 = 0$	(d) $x^2 + y^2 + 6x - 5y + 9 = 0$	
15.	From three non-collinear points we can draw		[MP PET 1984; BIT Ranchi 1990]
	(a) Only one circle (b) Three circle		(d) No circle
16.	Equation of a circle whose centre is origin and radius is equal to th		
	(a) $x^2 + y^2 = 1$ (b) $x^2 + y^2 = \sqrt{2}$	(c) $x^2 + y^2 = 4$	(d) $x^2 + y^2 = -4$
17.	If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the	e equation of this circle is	[Rajasthan PET 1985, 1989]
	(a) $(x-2)^2 + (y-3)^2 = 8$ (b) $(x-2)^2 + (y-3)^2 = 3$	(c) $(x+2)^2 + (y+3)^2 = 2\sqrt{2}$	(d) $(x-2)^2 + (y-3)^2 = 2\sqrt{2}$
18.	$ax^2 + 2y^2 + 2bxy + 2x - y + c = 0$ represents a circle through the	ne origin, if	[MP PET 1984]
			(d) $a=2, b=0, c=0$
19.	If the equation $\frac{K(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$ represents a circle, then	ı <i>K</i> =	[MP PET 1994]
20	(a) 3/4 (b) 1		(d) 12
20.	A circle has radius 3 units and its centre lies on the line $y = x - 1$.	Then the equation of this circle if it pa	[Roorkee 1988]
	(a) $x^2 + y^2 - 8x - 6y + 16 = 0$	(b) $x^2 + y^2 + 8x + 6y + 16 = 0$	
	(c) $x^2 + y^2 - 8x - 6y - 16 = 0$	(d) None of these	
21.	The equation of circle whose diameter is the line joining the points		
		IT 1971; Rajasthan PET 1984, 87, 89; MI	PET 1984; Roorkee 1969; AMU 1979]
	(a) $x^2 + y^2 + 8x + 2y + 51 = 0$	(b) $x^2 + y^2 + 8x - 2y - 51 = 0$	
	(c) $x^2 + y^2 + 8x + 2y - 51 = 0$	(d) $x^2 + y^2 - 8x - 2y - 51 = 0$	
22.	The equation of the circle which passes through the points $(3, -2)$	and $(-2, 0)$ and centre lies on the line	2x - y = 3, is
			[Roorkee 1971]
	(a) $x^2 + y^2 - 3x - 12y + 2 = 0$	(b) $x^2 + y^2 - 3x + 12y + 2 = 0$	
	(c) $x^2 + y^2 + 3x + 12y + 2 = 0$	(d) None of these	
23.	For $ax^2 + 2hxy + 3y^2 + 4x + 8y - 6 = 0$ to represent a circle, or	ne must have	
	(a) $a = 3, h = 0$ (b) $a = 1, h = 0$	* *	(d) $a = h = 0$
24.	The equation of the circle in the first quadrant which touches each	_	[MP PET 199 7]
	(a) $x^2 + y^2 + 5x + 5y + 25 = 0$	(b) $x^2 + y^2 - 10x - 10y + 25 =$	
	(c) $x^2 + y^2 - 5x - 5y + 25 = 0$	(d) $x^2 + y^2 + 10x + 10y + 25 =$	0
25.	If (α, β) is the centre of a circle passing through the origin, then i	_	[MP PET 1999]
	(a) $x^2 + y^2 - \alpha x - \beta y = 0$ (b) $x^2 + y^2 + 2\alpha x + 2\beta y = 0$	(c) $x^2 + y^2 - 2\alpha x - 2\beta y = 0$	(d) $x^2 + y^2 + \alpha x + \beta y = 0$
26.	The equation of the circle whose diameter lies on $2x + 3y = 3$ an	d $16x - y = 4$ and which passes through	gh (4, 6) is

(a) $x^2 + y^2 + ax + by = 0$ (b) $x^2 + y^2 - ax + by = 0$ (c) $x^2 + y^2 - ax - by = 0$ (d) $x^2 + y^2 + ax - by = 0$

(a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax - by = 0$ (c) $x^2 + y^2 - ax + by = 0$ (d) $x^2 + y^2 + ax + by = 0$

(b) f = g and h = 0

The equation of the circle whose diameters have the end points (a, 0), (0, b) is given by

The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ will represent a circle, if [MNR 1979; MP PET 1988; Rajasthan PET 1997, 2003]

(c) $a = b \neq 0$ and h = 0

(b) $x^2 + y^2 - 4x - 8y = 200$

(d) $x^2 + y^2 = 40$

[Kurukshetra CEE 1998]

[EAMCET 2002]

The equation of the circle of radius 5 and touching the coordinate axes in third quadrant is

(a) $5(x^2 + y^2) - 3x - 8y = 200$

(c) $5(x^2 + y^2) - 4x = 200$

27.

12.

13.

(a) a = b = 0 and c = 0

(a)
$$(x-5)^2 + (y+5)^2 = 25$$

(b)
$$(x+4)^2 + (y+4)^2 = 2$$

(a)
$$(x-5)^2 + (y+5)^2 = 25$$
 (b) $(x+4)^2 + (y+4)^2 = 25$ (c) $(x+6)^2 + (y+6)^2 = 25$ (d) $(x+5)^2 + (y+5)^2 = 25$

(d)
$$(x+5)^2 + (y+5)^2 = 25$$

28. The centre of a circle is (2, -3) and the circumference is 10π . Then the equation of the circle is [Kerala (Engg.) 2002]

(a)
$$x^2 + y^2 + 4x + 6y + 12 = 0$$

(b)
$$x^2 + y^2 - 4x + 6y + 12 = 0$$

(c)
$$x^2 + y^2 - 4x + 6y - 12 = 0$$

(d)
$$x^2 + y^2 - 4x - 6y - 12 = 0$$

29. The circle described on the line joining the points (0, 1), (a, b) as diameter cuts the x-axis in points whose abscissae are roots of the equation

(a)
$$x^2 + ax + b = 0$$

(b)
$$x^2 - ax + b = 0$$

(c)
$$x^2 + ax - b = 0$$

(d)
$$x^2 - ax - b = 0$$
.

Four distinct points (2k, 3k), (1, 0), (0, 1) and (0, 0) lie on a circle for 30.

(a) All integral values of
$$k$$

(b)
$$0 < k < 1$$

(c)
$$k < 0$$

31. The equations of the circles which touch both the axes and the line x = a are

(a)
$$x^2 + y^2 \pm ax \pm ay + \frac{a^2}{4} = 0$$

(b)
$$x^2 + y^2 + ax \pm ay + \frac{a^2}{4} = 0$$

(c)
$$x^2 + y^2 - ax \pm ay + \frac{a^2}{4} = 0$$

(d) None of these.

32. The equation of the unit circle concentric with
$$x^2 + y^2 + 8x + 4y - 8 = 0$$
 is

[EAMCET 1991]

(a)
$$x^2 + y^2 - 8x + 4y - 8 = 0$$

(b)
$$x^2 + y^2 - 8x + 4y + 8 = 0$$

(c)
$$x^2 + y^2 - 8x + 4y - 28 = 0$$

(d)
$$x^2 + y^2 - 8x + 4y + 19 = 0$$

33. A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the x-axis along the positive direction of the x-axis then the equation of the circle in the new position is

(a)
$$x^2 + y^2 - 4(x + y) - 8\pi x + (2 + 4\pi)^2 = 0$$

(b)
$$x^2 + y^2 - 4x - 4y + (2 + 4\pi)^2 = 0$$

(c)
$$x^2 + y^2 - 8\pi x - 4y + (2 + 4\pi)^2 = 0$$

A circle which touches the axes and whose centre is at distance $2\sqrt{2}$ from the origin, has the equation 34.

(a)
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

(c)
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

If (-1, 4) and (3, -2) are end points of a diameter of a circle, then the equation of this circle is 35.

[Rajasthan PET 1987, 89]

(a)
$$(x-1)^2 + (y-1)^2 = 1$$

(a)
$$(x-1)^2 + (y-1)^2 = 13$$
 (b) $(x+1)^2 + (y+1)^2 = 13$ (c) $(x-1)^2 + (y+1)^2 = 13$ (d) $(x+1)^2 + (y-1)^2 = 13$

(c)
$$(r-1)^2 + (r+1)^2 = 13$$

(d)
$$(x+1)^2 + (y-1)^2 = 13$$

The equation of the circle concentric with the circle $x^2 + y^2 - 3x + 4y - c = 0$ and passing through the point (-1, -2) is 36.

[Rajasthan PET 1984, 92]

(a)
$$x^2 + y^2 - 3x + 4y - 1 = 0$$

(b)
$$x^2 + y^2 - 3x + 4y = 0$$

(c)
$$x^2 + y^2 - 3x + 4y + 2 = 0$$

(d) None of these

If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with $x^2 + y^2 + 6x + 8y - 5 = 0$, then c is equal to 37.

[Rajasthan PET 1986]

(a)
$$-11$$

(c)
$$-24$$

Equation $x^2 + y^2 + 4x + 6y + 13 = 0$ represents 38.

[Roorkee 1990]

(b) A pair of two different lines

(c) A pair of coincident lines

39. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

[AIEEE 2004]

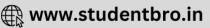
(a)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(d)
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

Advance Level



	the circle described on this chord as diameter is	[MP PET 1990]
	(a) $(1+m^2)(x^2+y^2)-2ax=0$	(b) $(1+m^2)(x^2+y^2)-2a(x+my)=0$
	(c) $(1+m^2)(x^2+y^2)+2a(x+my)=0$	(d) $(1+m^2)(x^2+y^2)-2a(x-my)=0$
41.	If $y = 2x$ is a chord of the circle $x^2 + y^2 - 10x = 0$, then the ed	quation of the circle of which this chord is a diameter, is
		[Rajasthan PET 1988]
	(a) $x^2 + y^2 - 2x + 4y = 0$ (b) $x^2 + y^2 + 2x + 4y = 0$	(c) $x^2 + y^2 + 2x - 4y = 0$ (d) $x^2 + y^2 - 2x - 4y = 0$
42.	The circle on the chord $x \cos \alpha + y \sin \alpha = p$ of the circle $x^2 + y$	$a^2 = a^2$ as diameter has the equation [Roorkee 1967; MP PET 1993]
	(a) $x^2 + y^2 - a^2 - 2p(x\cos\alpha + y\sin\alpha - p) = 0$	(b) $x^2 + y^2 + a^2 + 2p(x\cos\alpha - y\sin\alpha + p) = 0$
	(c) $x^2 + y^2 - a^2 + 2p(x\cos\alpha + y\sin\alpha + p) = 0$	(d) $x^2 + y^2 - a^2 - 2p(x\cos\alpha - y\sin\alpha - p) = 0$
43.	The equation of circle which touches the axes of coordinates	and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is
	$x^2 + y^2 - 2cx - 2cy + c^2 = 0$, where c is	[Ranchi BIT 1986; Kurukshetra CEE 1996]
	(a) 1 (b) 2	(c) 3 (d) 6
44.	The equation of a circle which touches both axes and the line $3x$	-4y + 8 = 0 and lies in the third quadrant is [MP PET 1986]
	(a) $x^2 + y^2 - 4x + 4y - 4 = 0$	(b) $x^2 + y^2 - 4x + 4y + 4 = 0$
	(c) $x^2 + y^2 + 4x + 4y + 4 = 0$	(d) $x^2 + y^2 - 4x - 4y - 4 = 0$
45.	Equation of the circle which touches the lines $x = 0$, $y = 0$ and $x = 0$	3x + 4y = 4 is [MP PET 1991]
	(a) $x^2 - 4x + y^2 + 4y + 4 = 0$	(b) $x^2 - 4x + y^2 - 4y + 4 = 0$
	(c) $x^2 + 4x + y^2 + 4y + 4 = 0$	(d) $x^2 + 4x + y^2 - 4y + 4 = 0$
46.	The equation of the circumcircle of the triangle formed by the line	es $y + \sqrt{3}x = 6$, $y - \sqrt{3}x = 6$ and $y = 0$, is [EAMCET 1982]
	(a) $x^2 + y^2 - 4y = 0$ (b) $x^2 + y^2 + 4x = 0$	(c) $x^2 + y^2 - 4y = 12$ (d) $x^2 + y^2 + 4x = 12$
47.	A variable circle passes through the fixed point $A(p, q)$ and touc	hes x-axis. The locus of the other end of the diameter through A is
		[AIEEE 2004]
	(a) $(y-q)^2 = 4px$ (b) $(x-q)^2 = 4py$	(c) $(y-p)^2 = 4qx$ (d) $(x-p)^2 = 4qy$
48.	If a circle passes through the points of intersection of the coordin	ate axes with the lines $\lambda x - y + 1 = 0$ and $x - 2y + 3 = 0$, then the value
	of λ is	[HT 1991]
49.	(a) 1 (b) 2 Equation to the circles which touch the lines $3x - 4y + 1 = 0$, 4	(c) 3 (d) 4 $x + 3y - 7 = 0$ and pass through (2, 3) are [EAMCET 1989]
	(a) $(x-2)^2 + (y-8)^2 = 25$	(b) $5x^2 + 5y^2 - 12x - 24y + 31 = 0$
	(c) Both (a) and (b)	(d) None of these
50.	The equation of the circle which passes through (1, 0) and (0, 1) a	nd has its radius as small as possible, is
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - x - y = 0$
	(c) $2x^2 + 2y^2 - 3x - 3y + 1 = 0$	(d) $x^2 + y^2 - 3x - 3y + 2 = 0$
51.	The centres of a set of circles, each of radius 3, lie on the circle x	$^2 + y^2 = 25$. The locus of any point in the set is [AIEEE 2002]
	(a) $4 \le x^2 + y^2 \le 64$ (b) $x^2 + y^2 \le 25$	(c) $x^2 + y^2 \ge 25$ (d) $3 \le x^2 + y^2 \le 9$
52.	The equation of the circle which touches both the axes and the stra	aight line $4x + 3y = 6$ in the first quadrant and lies below it is

y = mx is a chord of a circle of radius a and the diameter of the circle lies along x-axis and one end of this chord is origin. The equation of

(b) $x^2 + y^2 - 6x - 6y + 9 = 0$

[Roorkee 1992]

(a) $4x^2 + 4y^2 - 4x - 4y + 1 = 0$

40.

(c)
$$x^2 + y^2 - 6x - y + 9 = 0$$

(d)
$$4(x^2 + y^2 - x - 6y) + 1 = 0$$

Three sides of a triangle have the equations $L_r \equiv y - m_r x - c_r = 0$; r = 1, 2, 3. Then $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$, where 53. $\lambda \neq 0$, $\mu \neq 0$, $\nu \neq 0$, is the equation of the circumcircle of the triangle, if

(a)
$$\lambda(m_2 + m_3) + \mu(m_3 + m_1) + v(m_1 + m_2) = 0$$

(b)
$$\lambda (m_2 m_3 - 1) + \mu (m_3 m_1 - 1) + \nu (m_1 m_2 - 1) = 0$$

- (d) None of these
- The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines $x^2 y^2 2x + 4y 3 = 0$ is 54.

(a)
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 2x + 4y - 4 = 0$$

(c)
$$x^2 + y^2 - 2x + 4y + 4 = 0$$

- (d) None of these
- 55. The equation of a circle which touches x-axis and the line 4x - 3y + 4 = 0, its centre lying in the third quadrant and lies on the line x - y - 1 = 0, is

(a)
$$9(x^2 + y^2) + 6x + 24y + 1 = 0$$

(b)
$$9(x^2 + y^2) - 6x - 24y + 1 = 0$$

(c)
$$9(x^2 + y^2) - 6x + 2y + 1 = 0$$

- (d) None of these
- Two vertices of an equilateral triangle are (-1, 0) and (1, 0) and its third vertex lies above the x-axis. The equation of the circumcircle of the **56.** triangle is

(a)
$$x^2 + y^2 = 1$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$
 (c) $\sqrt{3}(x^2 + y^2) - 2y - \sqrt{3} = 0$ (d) None of these

A triangle is formed by the lines whose combined equation is given by (x + y - 4)(xy - 2x - y + 2) = 0. The equation of its circumcircle is 57.

(a)
$$x^2 + y^2 - 5x - 3y + 8 = 0$$

(b)
$$x^2 + y^2 - 3x - 5y + 8 = 0$$

(c)
$$x^2 + y^2 - 3x - 5y - 8 = 0$$

- (d) None of these
- If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1, 2) then the equation of its circumcircle is 58.

(a)
$$x^2 + y^2 - 2x - 2y - 3 = 0$$

(b)
$$x^2 + y^2 + 2x - 2y - 3 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 3 = 0$$

- (d) None of these
- The equation of the circle whose one diameter is PQ, where the ordinates of P, Q are the roots of the equation $x^2 + 2x 3 = 0$ and the 59. abscissae are the roots of the equation $y^2 + 4y - 12 = 0$, is

(a)
$$x^2 + y^2 + 2x + 4y - 15 = 0$$

(b)
$$x^2 + y^2 - 4x - 2y - 15 = 0$$

(c)
$$x^2 + y^2 + 4x + 2y - 15 = 0$$

- (d) None of these
- The equation of the circumcircle of an equilateral triangle is $x^2 + y^2 + 2gx + 2fy + c = 0$ and one vertex of the triangle is (1, 1). The equation 60. of incircle of the triangle is

(a)
$$4(x^2 + y^2) = g^2 + f^2$$

(b)
$$4(x^2 + y^2) + 8gx + 8fy = (1 - g)(1 + 3g) + (1 - f)(1 + 3f)$$

(c)
$$4(x^2 + y^2) + 8gx + 8fy = g^2 + f^2$$

- (d) None of these
- The equation of the circle of radius $2\sqrt{2}$ whose centre lies on the line x-y=0 and which touches the line x+y=4, and whose centre's 61. coordinates satisfy the inequality x + y > 4 is

(a)
$$x^2 + y^2 - 8x - 8y + 24 = 0$$

(b)
$$x^2 + y^2 = 8$$

(c)
$$x^2 + y^2 - 8x + 8y = 24$$

- (d) None of these
- The circumcircle of the quadrilateral formed by the lines x = a, x = 2a, y = -a, $y = \sqrt{2}a$ is 62.

(a)
$$x^2 + y^2 + 3ax + a^2 = 0$$
 (b) $x^2 + y^2 - 3ax - a^2 = 0$

(c)
$$x^2 + y^2 - 3ax + 2a^2 = 0$$
 (d) $x^2 + y^2 + 3ax - a^2 = 0$

(d)
$$x^2 + y^2 + 3ax - a^2 = 0$$

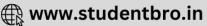
Equation of a circle S(x, y) = 0, S(2, 3) = 16, which touches the line 3x + 4y - 7 = 0 at (1, 1) is given by 63.

(a)
$$x^2 + y^2 + x + 2y - 5 = 0$$
 (b) $x^2 + y^2 + 2x + 2y - 6 = 0$ (c) $x^2 + y^2 + 4x - 6y = 0$

$$x - 6y = 0$$
 (d) None of these

Centre and Radius of a Circle

Basic Level



					Circl	le and System o	f Circles 119
1.	The area of the circle whose	e centre is at (1, 2) and which pas	ses through th	he point (4, 6) is			
			[MNR	1982; IIT 1980; Karnataka	CET 1	1999; MP PET 2	002; DCE 2000]
	(a) 5π	(b) 10π	, ,	25π	(d)	None of these	
	The centres of the circles x	$x^{2} + y^{2} = 1$, $x^{2} + y^{2} + 6x - 2y = 0$	= 1 and x^2 +	$-y^2 - 12x + 4y = 1 \text{ are}$			[MP PET 1986]
	(a) Same	(b) Collinear		Non-collinear	(d)	None of these	
•	If a circle passes through th	e point $(0, 0)$, $(a, 0)$, $(0, b)$, then i	ts centre is				[MNR 1975]
	(a) (a, b)	(b) (<i>b</i> , <i>a</i>)	(c)	$\left(\frac{a}{2},\frac{b}{2}\right)$	(d)	$\left(\frac{b}{2}, -\frac{a}{2}\right)$	
•	If the radius of the circle x	$x^2 + y^2 - 18x + 12y + k = 0$ be 1	1, then $k =$				[MP PET 1987]
	(a) 347	(b) 4	(c)	-4	(d)	49	
	The centre and radius of the	e circle $2x^2 + 2y^2 - x = 0$ are				D	MP PET 1984, 87]
	(a) $\left(\frac{1}{4}, 0\right)$ and $\frac{1}{4}$	(b) $\left(-\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(c)	$\left(\frac{1}{2},0\right)$ and $\frac{1}{2}$	(d)	$\left(0, -\frac{1}{4}\right)$ and	1/4
).	Centre of the circle $(x-3)^2$	$(v^2 + (v - 4)^2) = 5$ is					[MP PET 1988]
	(a) (3, 4)	(b) $(-3, -4)$	(c)	(4, 3)	(d)	(-4, -3)	
		the form $x^2 + y^2 + 2x + 4y + 1$, ,	• • •	, ,		alue of its radius
	from the following						[MP PET 1982]
	(a) Centre $(-1, -2)$, radius	s=2 (b)	Cer	ntre $(2, 1)$, radius = 1			•
	(c) Centre (1, 2), radius =			Centre $(-1, 2)$, radius = 2			
•		the points $(3, 0)$ and $(0, -3)$. The					[MP PET 1992]
	(a) $(3, -3)$	(b) (0,0)		(-3,0)	(d)	(6, -6)	
	Radius of the circle $x^2 + y$	$^{2} + 2x\cos\theta + 2y\sin\theta - 8 = 0,$	is				[MNR 1974]
	(a) 1	(b) 3	(c)	$2\sqrt{3}$	(d)	$\sqrt{10}$	
	The area of a circle whose of	centre is (h, k) and radius a is					[MP PET 1994]
	(a) $\pi(h^2 + k^2 - a^2)$	(b) $\pi a^2 h k$	(c)	πa^2	(d)	None of these	
	If the coordinates of one en	d of the diameter of the circle x^2	$+y^2 - 8x -$	-4y + c = 0 are $(-3, 2)$, the	en the c	oordinates of oth	er end are [Roorl
	(a) (5, 3)	(b) (6, 2)		(1, -8)		(11, 2)	_
		$= -1 + 2\cos\theta, \ y = 3 + 2\sin\theta, \ \text{is}$, ,				[MP PET 1995]
	(a) $(1, -3)$	(b) (-1, 3)	(c)	(1, 3)	(d)	None of these	
	If $g^2 + f^2 = c$, then the ed	y = 1 + 2gx + 2fy + c	= 0 will ren	present			[MP PET 2003]
		(b) A circle of radius f			(4)	A circle of radi	
	- · ·				, ,		
		ed in square formed by the lines					T Screening 2003]
	(a) (4, 7)	(b) (7, 4)	, ,	(9, 4)	(d)	(4, 9)	
		ax + 2fy + c = 0 will represent a	real circle if				
	(a) $g^2 + f^2 - c < 0$	(b) $g^2 + f^2 - c \ge 0$	(c)	Always	(d)	None of these	
	One of the diameters of the	circle $x^2 + y^2 - 12x + 4y + 6 =$	= 0 is given t	y			
	(a) x + y = 0	(b) $x + 3y = 0$	(c)	x = y	(d)	3x + 2y = 0	
		sing through the point (6, 2) two		-	+ 2y =	= 4 is [BIT Ranchi 1993]
		(b) $2\sqrt{5}$					•
	(a) 10		(c)		(d)	+	
	TC d d C 1 1 1	$ax^{2} + (2a + 2)x^{2} + 4x + 1 = 0$	41	0.10			
•	If the equation of a circle is (a) (2,0)	$\begin{array}{ccc} ax & +(2a-3)y & -4x-1=0 \\ \text{(b)} & (2/3,0) \end{array}$		(-2/3, 0)		None of these	

120	Circle and System of C	Circles		
	(a) R	(b) $(0, +\infty)$	(c) (-∞, 0)	(d) None of these
83.	The locus of the centres	of the circles for which one end of	a diameter is (1, 1) while the other en	d is on the line $x + y = 3$ is
	(a) $x + y = 1$	(b) $2(x-y) = 5$	(c) $2x + 2y = 5$	(d) None of these
84.	If A and B are two points	s on the circle $x^2 + y^2 - 4x + 6y$	-3 = 0 which are farthest and neares	t respectively from the point (7, 2) then
	(a) $A = (2 - 2\sqrt{2}, -3)$	$(3-2\sqrt{2})$	(b) $B = (2 + 2\sqrt{2}, -3 +$	$2\sqrt{2}$)
	(c) $A = (2 + 2\sqrt{2}, -3)$	$3+2\sqrt{2}$)	(d) $B = (2 - 2\sqrt{2}, -3 +$	$2\sqrt{2}$)
85.	The radius of the circle p	passing through the point (5, 4) and	d concentric to the circle $x^2 + y^2 - 8$.	x - 12y + 15 = 0 is
	(a) 5	(b) $\sqrt{5}$	(c) 10	(d) $\sqrt{10}$
86.	The length of the radius	of the circle $x^2 + y^2 + 4x - 6y =$	0 is	[Rajasthan PET 1995]
	(a) $\sqrt{11}$	(b) 12	(c) $\sqrt{13}$	(d) $\sqrt{14}$
87.	(2, y) is the centre of a	circle. If $(x, 3)$ and $(3, 5)$ are end po	oints of a diameter of this circle, then	[Roorkee 1986]
	(a) $x = 1, y = 4$	(b) $x = 4, y = 1$	(c) $x = 8, y = 2$	(d) None of these
88.	The greatest distance of	the point $P(10, 7)$ from the circle	$x^2 + y^2 - 4x - 2y - 20 = 0$ is	
	(a) 5	(b) 15	(c) 10	(d) None of these
89.	If one end of a diameter	of the circle $x^2 + y^2 - 4x - 6y +$	11 = 0 be $(3, 4)$, then the other end is	[MP PET 1986; BIT Ranchi 1991]
	(a) (0, 0)	(b) (1, 1)	(c) (1, 2)	(d) (2, 1)
			Advance Level	
90.	If $2x - 4y = 9$ and $6x$	-12y + 7 = 0 are the tangents of s	same circle, then its radius will be	[Roorkee 1995]
	(a) $\frac{\sqrt{3}}{5}$	(b) $\frac{17}{6\sqrt{5}}$	(c) $\frac{2\sqrt{5}}{3}$	(d) $\frac{17}{3\sqrt{5}}$
91.	If $5x - 12y + 10 = 0$ ar	12y - 5x + 16 = 0 are two tang	gents to a circle, then the radius of the	circle is [EAMCET 2003]
	(a) 1	(b) 2	(c) 4	(d) 6
92.	$\text{If } 2x^2 + \lambda xy + 2y^2 + (\lambda x)^2 + (\lambda x)^$	$(\lambda - 4)x + 6y - 5 = 0$ is the equation	on of a circle then its radius is	
	(a) $3\sqrt{2}$	(b) $2\sqrt{3}$	(c) $2\sqrt{2}$	(d) None of these
93.	C_1 is a circle of radius C_2 . Then the radius of C_2 is	1 touching the x-axis and the y-axi	is. C_2 is another circle of radius >1 an	and touching the axes as well as the circle C_1 .
	(a) $3 - 2\sqrt{2}$	(b) $3 + 2\sqrt{2}$	(c) $3 + 2\sqrt{3}$	(d) None of these
94.		distance and the shortest distance $a - 51 = 0$ then <i>GM</i> of <i>p</i> and <i>q</i> is equal to $a - 51 = 0$.		any point (α,β) on the curve whose equation
	(a) $2\sqrt{11}$	(b) $5\sqrt{5}$	(c) 13	(d) None of these
95.	The equation of a circle	is $x^2 + y^2 = 4$. The centre of the	smallest circle touching this circle and	d the line $x + y = 5\sqrt{2}$ has the coordinates
	(a) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	(b) $\left(\frac{3}{2}, \frac{3}{2}\right)$	(c) $\left(-\frac{7}{2\sqrt{2}}, -\frac{7}{2\sqrt{2}}\right)$	(d) None of these

A circle touches the line 2x - y - 1 = 0 at the point (3, 5). If its centre lies on the line x + y = 5 then the centre of that circle is

(c) (4, 1)

(d) (8, -3)

[Rajasthan PET 1992]

(b) (-3, 8)

96.

(a) (3, 2)

97.	The locus of the centre of the	e circle $(x \cos \theta + y \sin \theta - a)^2 + (x$	$\sin \theta - y \cos \theta + a)^{-} = a^{-} \text{ is}$		
	(a) $x^2 + y^2 = a^2$	(b) $x^2 + y^2 = 2a^2$	(c) $x^2 + y^2 = 4a^2$	(d) $x^2 + y^2 - 2ax$	$-2ay + a^2 = 0$
98.	If a circle $S(x, y) = 0$ touched	es at the point $(2, 3)$ of the line $x +$	y = 5 and $S(1, 2) = 0$, then radiu	s of such circle	
	(a) 2 units	(b) 4 units	(c) $\frac{1}{2}$ units	(d) $\frac{1}{\sqrt{2}}$ units	
				Intersection of a Line	and a Circle
		Ва	sic Level		
99.	A circle touches the <i>y</i> -axis at	the point (0, 4) and cuts the x-axis is	in a chord of length 6 units. The rac	lius of the circle is	[MP PET 1992]
	(a) 3	(b) 4	(c) 5	(d) 6	
100.	The radius of a circle which	touches y-axis at $(0, 3)$ and cuts inte	rcept of 8 units with x-axis, is		[IIT 1972]
	(a) 3	(b) 2	(c) 5	(d) 8	
101.	The intercept on the line $y =$	$= x \text{ by the circle } x^2 + y^2 - 2x = 0$	is AB. Equation of the circle with A	AB as a diameter is	[IIT 1996]
	(a) $x^2 + y^2 - x - y = 0$	(b) $x^2 + y^2 - 2x - y = 0$	(c) $x^2 + y^2 - x + y = 0$	(d) $x^2 + y^2 + x - y$	= 0
102.	The circle $x^2 + y^2 - 3x - 4$	y + 2 = 0 cuts x-axis at		[Karna	ataka CET 2001]
	(a) $(2,0), (-3,0)$	(b) (3, 0), (4, 0)	(c) $(1, 0), (-1, 0)$	(d) (1, 0), (2, 0)	
103.	If the line $y = x + 3$ meets t	the circle $x^2 + y^2 = a^2$ at A and B,	, then the equation of the circle hav	ing AB as a diameter will be	e
				[Raja	sthan PET 1988]
	(a) $x^2 + y^2 + 3x - 3y - a$	$^2 + 9 = 0$	(b) $x^2 + y^2 - 3x + 3y - a^2$	$x^2 + 9 = 0$	
	(c) $x^2 + y^2 + 3x + 3y - a$	$^{2} + 9 = 0$	(d) None of these		
104.	If the circle $x^2 + y^2 + 2ax$	+8y + 16 = 0 touches x-axis, then t	the value of a is	[Raja	sthan PET 1994]
	(a) ±16	(b) ±4	(c) ±8	(d) ±1	
105.	The length of the intercept m	nade by the circle $x^2 + y^2 = 1$ on the	he line $x + y = 1$ is		
	(a) 2	(b) $\sqrt{2}$	(c) $1/\sqrt{2}$	(d) $2\sqrt{2}$	
106.	The AM of the abscissae of p	points of intersection of the circle x^2	$x^2 + y^2 + 2gx + 2fy + c = 0$ with x	-axis is	
	(a) g	(b) $-g$	(c) f	(d) − <i>f</i>	
107.	The straight line $(x-2)+(y)$	$(x-2)^2 + 3 = 0$ cuts the circle $(x-2)^2 + 3$	$(y-3)^2 = 11$ at		[MNR 1975]
	(a) No points	(b) One point	(c) Two points	(d) None of these	
108.	The equation of a circle who	se centre is $(3, -1)$ and which cuts of	off a chord of length 6 on the line 2		[Roorkee 1977]
	(a) $(x-3)^2 + (y+1)^2 = 38$	8 (b) $(x+3)^2 + (y-1)^2 = 38$	(c) $(x-3)^2 + (y+1)^2 = \sqrt{3}$	(d) None of these	
109.	The points of intersection of	the line $4x - 3y - 10 = 0$ and the	circle $x^2 + y^2 - 2x + 4y - 20 = 0$) are	[IIT 1983]

(a) $-r\sqrt{1+m^2} < c \le 0$ (b) $0 \le c < r\sqrt{1+m^2}$ (c) (a) and (b) both 111. A line through (0, 0) cuts the circle $x^2 + y^2 - 2ax = 0$ at A and B, then locus of the centre of the circle drawn AB as diameter is

(a) $x^2 + y^2 - 2ay = 0$ (b) $x^2 + y^2 + ay = 0$ (c) $x^2 + y^2 + ax = 0$ (d) $x^2 + y^2 - ax = 0$

112. If the line y-1=m(x-1) cuts the circle $x^2+y^2=4$ at two real points then the number of possible values of m is

(a) (-2, -6), (4, 2) (b) (2, 6), (-4, -2) (c) (-2, 6), (-4, 2)

110. The line y = mx + c intersects the circle $x^2 + y^2 = r^2$ at two real distinct points, if

[Rajasthan PET 2002]

(d) None of these

(d) $-c\sqrt{1-m^2} < r$

(a) 1

(b) 2

(c) Infinite

(d) None of these

The GM of the abscissae of the points of intersection of the circle $x^2 + y^2 - 4x - 6y + 7 = 0$ and the line y = 1 is 113.

(b) $\sqrt{2}$

(c) $\sqrt{14}$

The equation(s) of the tangent at the point (0, 0) to the circle, making intercepts of length 2a and 2b units on the coordinate axes, is (are) 114.

(a) ax + by = 0

(b) ax - by = 0

(c) x = y

(d) None of these

Advance Level

A circle which passes through origin and cuts intercepts on axes a and b, the equation of circle is

[Rajasthan PET 1991]

(a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 - ax + by = 0$ (d) $x^2 + y^2 + ax - by = 0$

116. Let L_1 be a straight line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal, then which of the following equations can represent L_1

(b) x - y = 0

(c) x + 7y = 0

117. The two lines through (2, 3) from which the circle $x^2 + y^2 = 25$ intercepts chords of length 8 units have equations

(a) 2x + 3y = 13, x + 5y = 17

(b) y = 3, 12x + 5y = 39

(c) x = 2, 9x - 11y = 51

(d) None of these

Circles are drawn through the point (2, 0) to cut intercepts of length 5 units on the x-axis. If their centres lie in the first quadrant, then their 118. [Roorkee 1992]

(a) $x^2 + y^2 - 9x + 2ky + 14 = 0$

(b) $3x^2 + 3y^2 + 27x - 2ky + 42 = 0$

(c) $x^2 + v^2 - 9x - 2ky + 14 = 0$

(d) $x^2 + y^2 - 2kx - 9y + 14 = 0$

119. A circle touches the y-axis at (0, 2) and has an intercept of 4 units on the positive side of the x-axis. Then the equation of the circle is

[IIT 1995]

(a)
$$x^2 + y^2 - 4(\sqrt{2}x + y) + 4 = 0$$

(b) $x^2 + y^2 - 4(x + \sqrt{2}y) + 4 = 0$

(c) $x^2 + y^2 - 2(\sqrt{2}x + y) + 4 = 0$

(d) None of these

Circles are drawn through the point (3, 0) to cut an intercept of length 6 units on the negative direction of the x-axis. The equation of the locus 120. of their centres is

(a) The x-axis

(b) x - y = 0

(c) The y-axis

(d) x + y = 0

Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $\left(-2, \frac{1}{2}\right)$. The slope of the line is

(a) $\frac{-1+\sqrt{29}}{14}$ (b) $\frac{1+\sqrt{7}}{4}$

(c) $\frac{-1-\sqrt{29}}{14}$

If 2*l* be the length of the intercept made by the circle $x^2 + y^2 = a^2$ on the line y = mx + c, then c^2 is equal to

(a) $(1+m^2)(a^2+l^2)$ (b) $(1+m^2)(a^2-l^2)$

(c) $(1-m^2)(a^2+l^2)$

For the circle $x^2 + y^2 + 4x - 7y + 12 = 0$ the following statement is true

(a) The length of tangent from (1, 2) is 7

(b) Intercept on y-axis is 2

(c) Intercept on x-axis is $2 - \sqrt{2}$

(d) None of these

The length of the chord joining the points in which the straight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle $x^2 + y^2 = \frac{169}{25}$ is 124. [Orissa JEE 2003]

A line is drawn through a fixed point $P(\alpha, \beta)$ to cut the circle $x^2 + y^2 = r^2$ at A and B. Then PA. PB is equal to

(a) $(\alpha + \beta)^2 - r^2$ (b) $\alpha^2 + \beta^2 - r^2$

(c) $(\alpha - \beta)^2 + r^2$

(d) None of these

126.	The range of values of m for	which the line $y = mx + 2$ cu	ts the circle x	$x^2 + y^2 = 1$ at	distinct or coinciden	t points is
	(a) $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, +$	∞) (b) $[-\sqrt{3}, \sqrt{3}]$	(c)	$[\sqrt{3}, +\infty)$	(d)	None of these
					Posi	tion of a point w.r.t. a Circle
			Basic Level			
127.	A point inside the circle x^2	$+y^2 + 3x - 3y + 2 = 0$ is				[MP PET 1988
	(a) (-1, 3)	(b) (-2, 1)	(c)	(2, 1)	(d)	(-3, 2)
128.	Position of the point (1, 1) v	with respect to the circle $x^2 + y$	$x^2 - x + y - 1 =$	= 0 is		[MP PET 1986, 1990]
	(a) Outside the circle	(b) Upon the circle		Inside the cir	rcle (d)	None of these
129.	The number of tangents that	can be drawn from (0, 0) to the	e circle $x^2 + y$	$y^2 + 2x + 6y -$	-15 = 0 is	[MP PET 1992]
	(a) None	(b) One	(c)	Two	(d)	Infinite
130.	The number of tangents whi	ch can be drawn from the point	(-1, 2) to the	circle $x^2 + y$	$x^2 + 2x - 4y + 4 = 0$	is [BIT Ranchi 1991]
	(a) 1	(b) 2	(c)	3	(d)	0
131.	The point $(0.1, 3.1)$ with res	pect to the circle $x^2 + y^2 - 2x$	-4y + 3 = 0, i	is		[MNR 1980
	(a) At the centre of the circ				cle but not at the cen	tre
	(c) On the circle		(d)	Outside the c	eircle	
132.	The number of the tangents	that can be drawn from (1, 2) to	$x^2 + y^2 = 5$	is		
	(a) 1	(b) 2	(c)	3	(d)	0
133.	The number of points on the	e circle $2x^2 + 2y^2 - 3x = 0$ w	hich are at a di	istance 2 from	the point $(-2, 1)$ is	
	(a) 2	(b) 0	(c)	1	(d)	None of these
134.	If $x^2 + y^2 - 6x + 8y - 11 =$	= 0 is a given circle and $(0, 0)$,	(1, 8) are two	points, then		
	(a) Both the points are insi	de the circle	(b)	Both the poin	nts are outside the cir	rcle
	(c) One point is on the circ	cle another is outside the circle	(d)	One point is	inside and another is	outside the circle
			Advance Leve	el		
135.	A region in the <i>x-y</i> plane is then	bounded by the curve $y = \sqrt{23}$	$5-x^2$ and th	the line $y = 0$. I	f the point $(a, a+1)$	lies in the interior of the region
	(a) $a \in (-4, 3)$	(b) $a \in (-\infty, -1) \cup (3, +\infty)$	(c)	$a \in (-1, 3)$	(d)	None of these
136.	If (2, 4) is a point interior to interval	to the circle $x^2 + y^2 - 6x - 10$	$y + \lambda = 0$ and	the circle doe	es not cut the axes at	any point , then $\boldsymbol{\lambda}$ belongs to the
	(a) (25, 32)	(b) (9, 32)	(c)	$(32, +\infty)$	(d)	None of these
137.	The range of values of $\theta \in $	$[0, 2\pi]$ for which $(1 + \cos \theta, \sin \theta)$	$(n\theta)$ is an inter	rior point of th	$e circle x^2 + y^2 = 1$	is
	(a) $(\pi/6, 5\pi/6)$	(b) $(2\pi/3, 5\pi/3)$		$(\pi/6, 7\pi/6)$		$(2\pi/3, 4\pi/3)$
138.	The range of values of r for	which the point $\left(-5 + \frac{r}{\sqrt{2}}, -\frac{1}{2}\right)$	$3 + \frac{r}{\sqrt{2}}$ is ar	n interior point	of the major segmen	nt of the circle $x^2 + y^2 = 16$, cu
	off by the line $x + y = 2$ is					
	(a) $(-\infty, 5\sqrt{2})$	(b) $(4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$	(c)	$(4\sqrt{2}-\sqrt{14}$	$(4\sqrt{2} + \sqrt{14})$ (d)	None of these
139.	If $P(2, 8)$ is an interior point	t of a circle $x^2 + y^2 - 2x + 4y$	y - p = 0 which	ch neither touc	thes nor intersects the	e axes, then set for p is
	(a) $p < -1$	(b) $p < -4$		<i>p</i> > 96	(d)	
		1	Equation of T	Tangent, Coi	ndition for Tangen	acy and the points of Contact
			4			Firm of Contact

Basic Level

CLICK HERE

140.	The equation of the tangent t	to the circle $x^2 + y^2 = r^2$ at (a, b) is	$ax + by - \lambda = 0$, where λ is		
	(a) a^2	(b) b^2	(c) r^2	(d)	None of these
141.	$x = 7$ touches the circle x^2	$+y^2 - 4x - 6y - 12 = 0$, then the c	oordinates of the point of contact a		[MP PET 1996]
	(a) (7, 3)	(b) (7, 4)	(c) (7, 8)	(d)	(7, 2)
142.	A circle with centre (a, b) pa	asses through the origin. The equation	of the tangent to the circle at the o	rigin is	[Rajasthan PET 2000]
	(a) $ax - by = 0$	(b) ax + by = 0	(c) $bx - ay = 0$	(d)	bx + ay = 0
143.	If the tangent at a point $P(x)$, y) of a curve is perpendicular to the	line that joins origin with the poin	P, then	the curve is
					[MP PET 1998]
	(a) Circle	(b) Parabola	(c) Ellipse	(d)	Straight line
144.	The circle $x^2 + y^2 - 8x + 4$	4y + 4 = 0 touches			[Karnataka CET 1999]
	•	(b) y-axis only	(c) Both x and y-axis	(d)	Does not touch any axis
145.	The condition that the line x	$a\cos \alpha + y\sin \alpha = p$ may touch the ci	$rcle x^2 + y^2 = a^2 is$		[AMU 1999]
	(a) $p = a \cos \alpha$	(b) $p = a \tan \alpha$	(c) $p^2 = a^2$	(d)	$p\sin\alpha=a$
146.	The equation of circle with c	centre (1, 2) and tangent $x + y - 5 = 0$	is		[MP PET 2001]
	(a) $x^2 + y^2 + 2x - 4y + 6$	$\delta = 0$	(b) $x^2 + y^2 - 2x - 4y + 3 =$	= 0	
	(c) $x^2 + y^2 - 2x + 4y + 8$		(d) $x^2 + y^2 - 2x - 4y + 8 =$		
1.47		the circle $x^2 + y^2 = a^2$ parallel to $y = a^2$		- 0	[D-!4k PET 2001]
147.					[Rajasthan PET 2001]
	(a) $y = mx \pm \sqrt{1 + m^2}$	(b) $y = mx \pm a\sqrt{1 + m^2}$	$(c) x = my \pm a\sqrt{1 + m^2}$	(d)	None of these
148.	The line $3x - 2y = k$ meets	the circle $x^2 + y^2 = 4r^2$ at only one	e point, if $k^2 =$		[Karnataka CET 2003]
	(a) $20r^2$	(b) $52r^2$	(c) $\frac{52}{9}r^2$	(d)	$\frac{20}{9}r^2$
			9		
149.		ill be a tangent to the circle $x^2 + y^2 =$	$=a^2$ if		[MNR 1974; AMU 1981]
	(a) $n^2(l^2 + m^2) = a^2$	(b) $a^2(l^2+m^2)=n^2$	(c) $n(l+m) = a$	(d)	a(l+m)=n
150.	The circle $x^2 + y^2 + 4x - 4$	4y + 4 = 0 touches			[MP PET 1988]
	(a) x-axis	(b) y-axis	(c) x-axis and y-axis	(d)	None of these
151.	If the line $lx + my = 1$ be a	tangent to the circle $x^2 + y^2 = a^2$, t	hen the locus of the point (l, m) is		[MNR 1978; Rajasthan PET 1997]
	(a) A straight line	(b) A circle	(c) A parabola	(d)	An ellipse
152.	The straight line $x - y - 3 =$	= 0 touches the circle $x^2 + y^2 - 4x$	+6y + 11 = 0 at the point whose c	coordinat	tes are [MP PET 1993]
	(a) $(1, -2)$	(b) (1, 2)	(c) $(-1, 2)$	(d)	(-1, -2)
153.	If the straight line $y = mx + mx$	c touches the circle $x^2 + y^2 - 4y =$	0, then the value of c will be		[Rajasthan PET 1988]
			(c) $2(1+\sqrt{1+m^2})$	(d)	$2 + \sqrt{1 + m^2}$
154.				(/	[Rajasthan PET 1984]
134.	At which point on a axis the				
	At which point on y-axis the (2) $(0, 1)$			(d)	
155	(a) (0, 1)	(b) (0, 2)	(c) (0, 3)	(d)	(0, 4)
155.	(a) $(0, 1)$ At which point the line $y = 1$	(b) $(0, 2)$ $x + \sqrt{2}a$ touches to the circle $x^2 + y$	(c) (0, 3)	(d)	
155.	(a) $(0, 1)$ At which point the line $y = 0$	(b) $(0, 2)$ $x + \sqrt{2}a$ touches to the circle $x^2 + y$	(c) (0, 3)		(0, 4)
155.	(a) $(0, 1)$ At which point the line $y = a$ or Line $y = x + a\sqrt{2}$ is a tange	(b) $(0, 2)$ $x + \sqrt{2}a$ touches to the circle $x^2 + y$	(c) (0, 3)		

[Rajasthan PET 1986]

156. If the line 3x + 4y - 1 = 0 touches the circle $(x - 1)^2 + (y - 2)^2 = r^2$, then the value of r will be

Circle	and	System	of	Circ	lee	125
CITCLE	anu	System	OI	CIIC	les	143

[Roorkee 1972; Kurukshetra CEE 1996]

(d) 3x + 4y = 0

(d) 35, -15

(d) (0, -3)

(d) $\frac{1}{\sqrt{a}}$

(d) None of these.

[MNR 1976]

(a) 0 (b) 1 (c) -1 (d) Depends on h. 163. The line $y = mx + \sqrt{4 + 4m^2}$, $m \in R$, is a tangent to the circle (a) $x^2 + y^2 = 2$ (b) $x^2 + y^2 = 4$ (c) $x^2 + y^2 = 1$ (d) None of these 164. The point of contact of a tangent from the point (1, 2) to the circle $x^2 + y^2 = 1$ has the coordinates (a) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (b) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ (c) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (d) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ 165. If the line $x + y = 1$ is a tangent to a circle with centre (2, 3), then its equation will be (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B. The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point (1, -2) touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is [III 1989] (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $y = \sqrt{3}x \pm 10$ (b) $y = \sqrt{3}x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If the circle $y = \sqrt{3}x + $			-			Vα
163. The line $y = mx + \sqrt{4 + 4m^2}$, $m \in R$, is a tangent to the circle (a) $x^2 + y^2 = 2$ (b) $x^2 + y^2 = 4$ (c) $x^2 + y^2 = 1$ (d) None of these 164. The point of contact of a tangent from the point (1, 2) to the circle $x^2 + y^2 = 1$ has the coordinates (a) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (b) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ (c) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (d) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ 165. If the line $x + y = 1$ is a tangent to a circle with centre (2, 3), then its equation will be [Rajasthan PET 1985, 89] (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B. The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point (1, -2) touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is [IIIT 1989] (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by [AMU 2000] (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y-axis, then the length of PQ is	162.	The slope of the tangent at the	point (h, h) of the circle $x^2 + y^2 = a$	u^2 is		[Roorkee 1993]
(a) $x^2 + y^2 = 2$ (b) $x^2 + y^2 = 4$ (c) $x^2 + y^2 = 1$ (d) None of these 164. The point of contact of a tangent from the point $(1, 2)$ to the circle $x^2 + y^2 = 1$ has the coordinates (a) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (b) $\left(\frac{1 - 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ (c) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 + \sqrt{19}}{5}\right)$ (d) $\left(\frac{1 + 2\sqrt{19}}{5}, \frac{2 - \sqrt{19}}{5}\right)$ 165. If the line $x + y = 1$ is a tangent to a circle with centre $(2, 3)$, then its equation will be (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y + 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is		(a) 0	(b) 1	(c) -1	(d)	Depends on h.
164. The point of contact of a tangent from the point $(1, 2)$ to the circle $x^2 + y^2 = 1$ has the coordinates (a) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$ (b) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$ (c) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$ (d) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$ 165. If the line $x + y = 1$ is a tangent to a circle with centre $(2, 3)$, then its equation will be (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $y = \sqrt{3}x \pm 10$ (b) $y = \sqrt{3}x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 170. If the circle $y = \sqrt{3}x + $	163.	The line $y = mx + \sqrt{4 + 4m^2}$, $m \in R$, is a tangent to the circle			
(a) $\left(\frac{1-2\sqrt{19}}{5},\frac{2+\sqrt{19}}{5}\right)$ (b) $\left(\frac{1-2\sqrt{19}}{5},\frac{2-\sqrt{19}}{5}\right)$ (c) $\left(\frac{1+2\sqrt{19}}{5},\frac{2+\sqrt{19}}{5}\right)$ (d) $\left(\frac{1+2\sqrt{19}}{5},\frac{2-\sqrt{19}}{5}\right)$ 165. If the line $x+y=1$ is a tangent to a circle with centre (2, 3), then its equation will be [Rajasthan PET 1985, 89] (a) $x^2+y^2-4x-6y+4=0$ (b) $x^2+y^2-4x-6y+5=0$ (c) $x^2+y^2-4x-6y-5=0$ (d) None of these 166. A tangent to the circle $x^2+y^2=a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{a^2}$ (b) $\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{a^2}$ (c) $\frac{1}{x^2}+\frac{1}{y^2}=4a^2$ (d) $\frac{1}{x^2}+\frac{1}{y^2}=\frac{a^2}{4}$ 167. If the tangent to the circle $x^2+y^2=5$ at point (1, -2) touches the circle $x^2+y^2-8x+6y+20=0$, then its point of contact is (a) $y=\sqrt{3}x\pm10$ (b) $y=\sqrt{3}y=x\pm10$ (c) $y=\sqrt{3}x\pm2$ (d) None of these (a) $y=\sqrt{3}x\pm10$ (b) $y=\sqrt{3}y=x\pm10$ (c) $y=\sqrt{3}x\pm2$ (d) None of these (a) $y=\sqrt{3}x\pm10$ (b) $y=\sqrt{3}y=x\pm10$ (c) $y=\sqrt{3}x\pm2$ (d) None of these (a) $y=\sqrt{3}x\pm10$ (b) $y=\sqrt{3}y=x\pm10$ (c) $y=\sqrt{3}x\pm2$ (d) $y=\sqrt{3}y=3$		(a) $x^2 + y^2 = 2$	(b) $x^2 + y^2 = 4$	(c) $x^2 + y^2 = 1$	(d)	None of these
165. If the line $x + y = 1$ is a tangent to a circle with centre (2, 3), then its equation will be (a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point (1, -2) touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is	164.	The point of contact of a tange	ent from the point $(1, 2)$ to the circle x	$x^2 + y^2 = 1$ has the coordinates		
(a) $x^2 + y^2 - 4x - 6y + 4 = 0$ (b) $x^2 + y^2 - 4x - 6y + 5 = 0$ (c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is [IIT 1989] (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by [AMU 2000] (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is		(a) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(b) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$	(c) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(d)	$\left(\frac{1+2\sqrt{19}}{5},\frac{2-\sqrt{19}}{5}\right)$
(c) $x^2 + y^2 - 4x - 6y - 5 = 0$ (d) None of these 166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B . The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is	165.	If the line $x + y = 1$ is a tange	ent to a circle with centre (2, 3), then i	ts equation will be		[Rajasthan PET 1985, 89]
166. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes at points A and B. The locus of the mid point of AB is (a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $y = (-1)x + (-1$		(a) $x^2 + y^2 - 4x - 6y + 4 =$	= 0	(b) $x^2 + y^2 - 4x - 6y + 5 = 0$		
(a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$ 167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is [IIT 1989] (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by [AMU 2000] (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y-axis, then the length of PQ is		(c) $x^2 + y^2 - 4x - 6y - 5 =$	= 0	(d) None of these		
167. If the tangent to the circle $x^2 + y^2 = 5$ at point $(1, -2)$ touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of contact is (a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y-axis, then the length of PQ is	166.	A tangent to the circle $x^2 + y$	$a^2 = a^2$ meets the axes at points A and	d B. The locus of the mid point of A	B is	
(a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y-axis, then the length of PQ is		(a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$	(b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$	(c) $\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$	(d)	$\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$
(a) $(-1, -3)$ (b) $(3, -1)$ (c) $(-2, 1)$ (d) $(5, 0)$ 168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y-axis, then the length of PQ is	167.	If the tangent to the circle x^2	$+y^2 = 5$ at point $(1, -2)$ touches the	circle $x^2 + y^2 - 8x + 6y + 20 = 0$, the	en its point of contact is
168. The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x -axis, will be (a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point $(1, 2)$, then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is						[IIT 1989]
(a) $y = \sqrt{3}x \pm 10$ (b) $\sqrt{3}y = x \pm 10$ (c) $y = \sqrt{3}x \pm 2$ (d) None of these 169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is					` ′	(5,0)
169. If $y = c$ is a tangent to the circle $x^2 + y^2 = 4$, then (a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is	168.	The equation of the tangent to	the circle $x^2 + y^2 = 25$ which is inc	clined at 60° angle with x-axis, will	be	
(a) $ c > 2$ (b) $ c < 2$ (c) $ c = 2$ (d) $ c = 0$ Advance Level 170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is		(a) $y = \sqrt{3}x \pm 10$	(b) $\sqrt{3}y = x \pm 10$	(c) $y = \sqrt{3}x \pm 2$	(d)	None of these
170. If the circle $(x - h)^2 + (y - k)^2 = r^2$ is a tangent to the curve $y = x^2 + 1$ at a point (1, 2), then the possible location of the points (h, k) are given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is	169.	If $y = c$ is a tangent to the cir	$cle x^2 + y^2 = 4, then$			
 170. If the circle (x - h)² + (y - k)² = r² is a tangent to the curve y = x² + 1 at a point (1, 2), then the possible location of the points (h, k) are given by (a) hk = 5/2 (b) h + 2k = 5 (c) h² - 4k² = 5 (d) k² = h² + 1 171. If the tangent at the point P on the circle x² + y² + 6x + 6y = 2 meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the length of PQ is 		(a) $ c > 2$	(b) $ c < 2$	(c) $ c = 2$	(d)	c = 0
 170. If the circle (x - h)² + (y - k)² = r² is a tangent to the curve y = x² + 1 at a point (1, 2), then the possible location of the points (h, k) are given by (a) hk = 5/2 (b) h + 2k = 5 (c) h² - 4k² = 5 (d) k² = h² + 1 171. If the tangent at the point P on the circle x² + y² + 6x + 6y = 2 meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the length of PQ is 			Advana	a I aval		
given by (a) $hk = 5/2$ (b) $h + 2k = 5$ (c) $h^2 - 4k^2 = 5$ (d) $k^2 = h^2 + 1$ 171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is						
171. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point Q on the y -axis, then the length of PQ is	170.		$r^2 = r^2$ is a tangent to the curve $y = r^2$			[AMU 2000]
length of PQ is			` '		` '	
	171.		n the circle $x^2 + y^2 + 6x + 6y = 2$ r	meets the straight line $5x - 2y + 6$	= 0 a	_
(a) 4 (b) $2\sqrt{5}$ (c) 5 (d) $3\sqrt{5}$		-	a	.		_
		(a) 4	(b) $2\sqrt{5}$	(c) 5	(d)	3√5

(a) 2

(a) 2y = x

(a) $\left(\pm \frac{5}{2}, \pm \frac{1}{2}\right)$

(a) *a*

157.

158.

159.

160.

(b) 5

(b) 4y = 3x

(b) (-3, 0)

(b) $\frac{1}{a}$

(b) $\left(\pm \frac{1}{2}, \pm \frac{5}{2}\right)$

If the line hx + ky = 1 touches $x^2 + y^2 = a^2$, then the locus of the point (h, k) is a circle of radius

If the line $3x - 4y = \lambda$ touches the circle $x^2 + y^2 - 4x - 8y - 5 = 0$, then λ is equal to

If the centre of a circle is (-6, 8) and it passes through the origin, then equation to its tangent at the origin, is

The tangent to $x^2 + y^2 = 9$ which is parallel to y-axis and does not lie in the third quadrant touches the circle at the point

The points of contact of tangents to the circle $x^2 + y^2 = 25$ which are inclined at an angle of 30° to the x-axis are

(c) 3y = 4x

(c) (0,3)

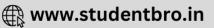
(c) \sqrt{a}

(c) $\left(\mp \frac{5}{2}, \mp \frac{1}{2}\right)$

172.	The tangents to $x^2 + y^2$	$y^2 = a^2$ having inclinations α and	If β intersect at P . If $\cot \alpha + \cot \beta = 0$	0, then the locus	of P is
	(a) x + y = 0	(b) $x - y = 0$	(c) $xy = 0$	(d) No	one of these
173.	If the points $A(1, 4)$ and	and B are symmetrical about the tang	gent to the circle $x^2 + y^2 - x + y = 0$	at the origin the	n coordinates of B are
	(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d) No	one of these
174.	A line parallel to the li	ne $x - 3y = 2$ touches the circle.	$x^2 + y^2 - 4x + 2y - 5 = 0$ at the point	nt	
	(a) $(1, -4)$	(b) (1, 2)	(c) $(3, -4)$	(d) (3	·
175.	The possible values of	p for which the line $x \cos \alpha + y \sin \alpha$	$n \alpha = p$ is a tangent to the circle $x^2 +$	$+y^2 - 2qx \cos \alpha$	
	(a) 0 and q	(b) q and $2q$	(c) 0 and $2q$	(d) q	[SCRA, 1999
176.	A circle passes through	n(0,0) and $(1,0)$ and touches to th	e circle $x^2 + y^2 = 9$, then the centre	of circle is	[IIT 1992
	(a) $\left(\frac{3}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, \frac{3}{2}\right)$	(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(d) (-	$\left(\frac{1}{2},\pm\sqrt{2}\right)$
	(2^2)	$(2^{\prime}2)$	$(2^{\prime}2)$		2, ,)
					Length of Tangent
			Basic Level		
			Dasic Level		
177.	The length of tangent	from the point $(5, 1)$ to the circle x	$x^2 + y^2 + 6x - 4y - 3 = 0$, is		[MNR 1981
	(a) 81	(b) 29	(c) 7	(d) 21	
178.		from (x_1, y_1) to the circle $x^2 + y^2$			[EAMCET 1980
	(a) $(x_1^2 + y_1^2 + 2gx_1)$	$+2fy_1+c)^{1/2}$	(b) $(x_1^2 + y_1^2)^{1/2}$		
	(c) $[(x_1 + g)^2 + (y_1 + y_2)]$	$+f)^2]^{1/2}$	(d) None of these		
179.	The length of the tange	ent from the point (4, 5) to the circl	e $x^2 + y^2 + 2x - 6y = 6$ is		[DCE 1999
	(a) $\sqrt{13}$	(b) $\sqrt{38}$	(c) $2\sqrt{2}$	(d) 2	$\sqrt{13}$
180.			ne circle $x^2 + y^2 - 4x - 6y + 3 = 0$ i		[MP PET 2000
101	(a) 20	(b) 30	(c) 40	(d) 50	
181.	The length of the tange	ent from $(0, 0)$ to the circle $2(x^2 +$	-y + x - y + 5 = 0 is	1	[EAMCET 1994 —
	(a) $\sqrt{5}$	(b) $\frac{\sqrt{5}}{2}$	(c) $\sqrt{2}$	(d) v	$\frac{5}{2}$
182.	The length of the tange	ent to the circle $x^2 + y^2 - 2x - y$	-7 = 0 from $(-1, -3)$ is	•	[Karnataka CET 1994
102.		(b) $2\sqrt{2}$	(c) A	(d) 8	[Karnataka CE1 1994
183.			0 and it touches the circle at point A	(-)	sses through the point $P(2, 1)$
	Then PA is equal to			8 [(=, -,
	(a) 4	(b) 2	(c) $2\sqrt{2}$	(d) No	one of these
184.	Lines are drawn throug	gh the point $P(-2, -3)$ to meet the	e circle $x^2 + y^2 - 2x - 10y + 1 = 0$.	The length of the	e line segment PA, A being th
	point on the circle who	ere the line meets the circle at coinc	eident points, is		
	(a) 16	(b) $4\sqrt{3}$	(c) 48	(d) No	one of these
			Advance Level		

185. The coordinates of the point from where the tangents are drawn to the circles $x^2 + y^2 = 1$, $x^2 + y^2 + 8x + 15 = 0$ and $x^{2} + y^{2} + 10y + 24 = 0$ are of same length, are [Roorkee 1982] (b) $\left(-2, -\frac{5}{2}\right)$ (c) $\left(-2, \frac{5}{2}\right)$ (d) $\left(2, -\frac{5}{2}\right)$

Length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is



_		,	Œ		200	•
- 1	[Ker	aia (Lng	(g.)	4UU.	41

(a)
$$\sqrt{c_1 - c}$$

(b)
$$\sqrt{c-c_1}$$

(c)
$$\sqrt{c_1 + c}$$

- (d) None of these
- If P is a point such that the ratio of the squares of the lengths of the tangents from P to the circles $x^2 + y^2 + 2x 4y 20 = 0$ and 187. $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2:3, then the locus of P is a circle with centre
 - (a) (7, -8)
- (b) (-7, 8)

- (c) (7,8)
- (d) (-7, -8)
- The lengths of the tangents from any point on the circle $15x^2 + 15y^2 48x + 64y = 0$ to the two circles 188. $5x^2 + 5y^2 - 24x + 32y + 75 = 0$, $5x^2 + 5y^2 - 48x + 64y + 300 = 0$ are in the ratio
- (b) 2:3

(c) 3:4

- (d) None of these
- If the squares of the lengths of the tangents from a point P to the circles $x^2 + y^2 = a^2$, $x^2 + y^2 = b^2$ and $x^2 + y^2 = c^2$ are in A. P., 189.
 - (a) a, b, c are in G.P.
- (b) *a, b, c* are in *A.P.*
- (c) a^2, b^2, c^2 are in A.P. (d) a^2, b^2, c^2 are in G.P.

Pair of Tangents to a Circle

Basic Level

A pair of tangents are drawn from the origin to the circle $x^2 + y^2 + 20(x + y) + 20 = 0$. The equation of the pair of tangents is 190.

(a)
$$x^2 + y^2 + 10xy = 0$$

(b)
$$x^2 + y^2 + 5xy = 0$$

(c)
$$2x^2 + 2y^2 + 5xy = 0$$

(c)
$$2x^2 + 2y^2 + 5xy = 0$$
 (d) $2x^2 + 2y^2 - 5xy = 0$

The equations of the tangents drawn from the origin to the circle $x^2 + y^2 - 2rx - 2hy + h^2 = 0$ are 191.

[Roorkee 1989; IIT 1988; Rajasthan PET 1996]

(a)
$$x = 0, y = 0$$

(b)
$$(h^2 - r^2)x - 2rhy = 0$$
, $x = 0$ (c) $y = 0$, $x = 4$

(d)
$$(h^2 - r^2)x + 2rhy = 0, x = 0$$

192. The equations of the tangents drawn from the point (0, 1) to the circle
$$x^2 + y^2 - 2x + 4y = 0$$
 are

[Roorkee 1979]

[AMU 1980]

[MP PET 2003]

(a)
$$2x - y + 1 = 0$$
, $x + 2y - 2 = 0$

(b)
$$2x - y + 1 = 0$$
, $x + 2y + 2 = 0$

(c)
$$2x-y-1=0$$
, $x+2y-2=0$

(d)
$$2x - y - 1 = 0$$
, $x + 2y + 2 = 0$

193. The two tangents to a circle from an external point are always [MP PET 1986]

- (b) Perpendicular to each other
- (c) Parallel to each other
- (d) None of these
- The equation of pair of tangents to the circle $x^2 + y^2 2x + 4y + 3 = 0$ from (6, -5), is 194.
 - (b) $7x^2 + 23y^2 + 30xy 66x 50y 73 = 0$

(a)
$$7x^2 + 23y^2 + 30xy + 66x + 50y - 73 = 0$$

(c)
$$7x^2 + 23y^2 - 30xy - 66x - 50y + 73 = 0$$

- (d) None of these
- Tangents drawn from origin to the circle $x^2 + y^2 2ax 2by + b^2 = 0$ are perpendicular to each other, if 195. [MP PET 1995]
 - (a) a b = 1
- (b) a+b=1
- (c) $a^2 = b^2$
- (d) $a^2 + b^2 = 1$
- The equation to the tangents to the circle $x^2 + y^2 = 4$, which are parallel to x + 2y + 3 = 0, are 196.
 - (b) $x + 2y = \pm 2\sqrt{3}$
- (c) $x + 2y = \pm 2\sqrt{5}$
- (d) $x 2y = \pm 2\sqrt{5}$
- If 3x + y = 0 is a tangent to the circle with centre at the point (2, -1), then the equation of the other tangent to the circle from the origin is [MNR 1996] 197.
- (b) x + 3y = 0
- (c) 3x y = 0
- $(d) \quad 2x + y = 0$
- The equation of a tangent to the circle $x^2 + y^2 = 25$ passing through (-2, 11) is 198.
 - (a) 4x + 3y = 25
- (b) 3x + 4y = 38
- (c) 24x 7y + 125 = 0
- (d) 7x + 24y = 230
- Tangents drawn from the point (4, 3) to the circle $x^2 + y^2 2x 4y = 0$ are inclined at an angle 199.

- The angle between the pair of tangents from the point (1, 1/2) to the circle $x^2 + y^2 + 4x + 2y 4 = 0$ is 200.
 - (a) $\cos^{-1} \frac{4}{5}$
- (b) $\sin^{-1} \frac{4}{5}$
- (c) $\sin^{-1} \frac{3}{5}$
- (d) None of these

The equation of the pair of tangents drawn from the point (0, 1) to the circle $x^2 + y^2 = 1/4$ is 201.

[Rajasthan PET 1998]

(a)
$$x^2 - 3y^2 + y + 1 = 0$$

(b)
$$x^2 - 3y^2 - y - 1 = 0$$

(a)
$$x^2 - 3y^2 + y + 1 = 0$$
 (b) $x^2 - 3y^2 - y - 1 = 0$ (c) $3x^2 - y^2 + 2y + 1 = 0$ (d) $3x^2 - y^2 + 2y - 1 = 0$

(d)
$$3x^2 - y^2 + 2y - 1 = 0$$

Advance Level

The angle between the two tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is 202.

[MNR 1990; Rajasthan PET 1997; DCE 2000]

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{2}$$

Tangents are drawn from the point (4, 3) to the circle $x^2 + y^2 = 9$. The area of the triangle formed by them and the line joining their points 203. of contact is [MP PET 1991; IIT 1981, 1987]

(a)
$$\frac{24}{25}$$

(b)
$$\frac{64}{25}$$

(c)
$$\frac{192}{25}$$

(d)
$$\frac{192}{5}$$

An infinite number of tangents can be drawn from (1, 2) to the circle $x^2 + y^2 - 2x - 4y + \lambda = 0$, then $\lambda =$ 204.

(a)
$$-20$$

The area of the triangle formed by the tangents from the points (h, k) to the circle $x^2 + y^2 = a^2$ and the line joining their points of contact is [MNR 1] 205.

(a)
$$a \frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$
 (b) $a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$ (c) $\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$ (d) $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$

(b)
$$a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$$

(c)
$$\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$

(d)
$$\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$$

Two tangents PQ and PR drawn to the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ from point P (16, 7). If the centre of the circle is C then the area 206. of quadrilateral PQCR will be [HT 1981; MP PET 1994]

The tangents are drawn from the point (4, 5) to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$. The area of quadrilateral formed by these tangents 207. and radii, is

Tangents are drawn to the circle $x^2 + y^2 = 50$ from a point 'P' lying on the x-axis. These tangents meet the y-axis at points 'P₁' and 'P₂'. 208. Possible coordinates of 'P' so that area of triangle PP_1P_2 is minimum, is /are

(b)
$$(10\sqrt{2}, 0)$$

(d)
$$(-10\sqrt{2}, 0)$$

The angle between the tangents from α , β to the circle $x^2 + y^2 = a^2$ is, (where $S_1 = \alpha^2 + \beta^2 - a^2$) 209.

(a)
$$\tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(b)
$$2 \tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(c)
$$2 \tan^{-1} \left(\frac{\sqrt{S_1}}{a} \right)$$
 (d) None of these

Normal and Condition of Normality

Basic Level

The normal to the circle $x^2 + y^2 - 3x - 6y - 10 = 0$ at the point (-3, 4), is 210.

[Rajasthan PET 1986, 89]

(a)
$$2x + 9y - 30 =$$

(a)
$$2x + 9y - 30 = 0$$
 (b) $9x - 2y + 35 = 0$

(c)
$$2x - 9y + 30 = 0$$

(d)
$$2x - 9y - 30 = 0$$

The equation of normal to the circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$ at (1, 1) is 211.

[MP PET 2001]

(a)
$$2x + y = 3$$

(b)
$$x - 2y = 3$$

(c)
$$x + 2y = 3$$

(d) None of these

The normal at the point (3, 4) on a circle cuts the circle at the point (-1, -2). Then the equation of the circle is 212.

[Orissa JEE 2002]

(a)
$$x^2 + y^2 + 2x - 2y - 13 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 11 = 0$$

(c)
$$x^2 + y^2 - 2x + 2y + 12 = 0$$

(d)
$$x^2 + y^2 - 2x - 2y + 14 = 0$$

The line $\lambda x + \mu y = 1$ is a normal to the circle $2x^2 + 2y^2 - 5x + 6y - 1 = 0$ if



(a)
$$5\lambda - 6\mu = 2$$

(b)
$$4 + 5\mu = 6\lambda$$

(c)
$$4 + 6\mu = 5\lambda$$

(d) None of these

214. The equation of a normal to the circle
$$x^2 + y^2 + 6x + 8y + 1 = 0$$
 passing through (0, 0) is (a) $3x + 4y = 0$ (b) $3x - 4y = 0$ (c) $4x - 3y = 0$

214.

(b)
$$3x - 4y = 0$$

(c)
$$4x - 3y = 0$$

(d) 4x + 3y = 0

215. The equation of the normal at the point
$$(4, -1)$$
 of the circle $x^2 + y^2 - 40x + 10y = 153$ is

(b)
$$3x - 4y =$$

(c)
$$4x - 3y = 0$$

$$(a) \quad x + 4y = 0$$

(b)
$$x - 4y = 0$$

(c)
$$4x + y = 3$$

(d) 4x - y = 0

216. The equation of the normal to the circle
$$x^2 + y^2 - 4x + 6y = 0$$
 at $(0, 0)$ is

[Rajasthan PET 1986]

[Rajasthan PET 1989]

$$(a) \quad 3x - 2y = 0$$

(b)
$$2x - 3y = 0$$

(c)
$$3x + 2y = 0$$

(d)
$$2x + 3y = 0$$

Advance Level

The area of triangle formed by the tangent, normal drawn at $(1, \sqrt{3})$ to the circle $x^2 + y^2 = 4$ and positive x-axis, is 217.

[IIT 1989; Rajasthan PET 1997, 99; Kurukshetra CEE 1998]

(a)
$$2\sqrt{3}$$

(b)
$$\sqrt{3}$$

(c)
$$4\sqrt{3}$$

- (d) None of these
- **218.** y x + 3 = 0 is the equation of normal at $\left(3 + \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ to which of the following circles

[Roorkee 1990]

(a)
$$\left(x-3-\frac{3}{\sqrt{2}}\right)^2 + \left(y-\frac{\sqrt{3}}{2}\right)^2 = 9$$

(b)
$$\left(x-3-\frac{3}{\sqrt{2}}\right)^2+y^2=6$$

(c)
$$(x-3)^2 + y^2 = 9$$

(d)
$$(x-3)^2 + (y-3)^2 = 9$$

The line ax + by + c = 0 is normal to the circle $x^2 + y^2 = r^2$. The portion of the line ax + by + c = 0 intercepted by this circle is of length 219.

(b)
$$r^2$$

(d)
$$\sqrt{r}$$

If the straight line ax + by = 2; $a, b \ne 0$ touches the circle $x^2 + y^2 - 2x = 3$ and is normal to the circle $x^2 + y^2 - 4y = 6$ then the values of 220. a and b are respectively [Roorkee 2000]

(a)
$$1, -1$$

(c)
$$-\frac{4}{3}$$
, 1

The number of feet of normals from the point (7, -4) to the circle $x^2 + y^2 = 5$ is 221.

Equation of the Chord

Basic Level

222. If (a, b) is a point on the chord AB of the circle, where the ends of the chord are A = (2, -3) and B = (3, 2) then

(a) $a \in [-3, 2], b \in [2, 3]$ (b) $a \in [2, 3], b \in [-3, 2]$

(c) $a \in [-2, 2], b \in [-3, 3]$

(d) None of these

223. The equation of the circle with the chord y = 2x of the circle $x^2 + y^2 - 10x = 0$ as its diameter is

(a) $x^2 + y^2 - 2x - 4y - 5 = 0$

(b) $x^2 + y^2 = 2x + 4y$

(c) $x^2 + y^2 = 4x + 2y$

(d) None of these

224. The radius of the circle, having centre at (2, 1), whose one of the chord is a diameter of the circle $x^{2} + y^{2} - 2x - 6y + 6 = 0$

[IIT Screening 2004]

(a) 1

(b) 2

(c) 3

(d) $\sqrt{3}$

Advance Level

225. The equation of the chord of the circle $x^2 + y^2 = 25$ of length 8 that passes through the point $(2\sqrt{3}, 2)$ and makes an acute angle with the positive direction of the x-axis is

(a) $(4\sqrt{3} - 3\sqrt{7})x + 3y = 18 - 6\sqrt{21}$

(b) $(4\sqrt{3} + 3\sqrt{7})x - 3y = 18 + 6\sqrt{21}$

(c) $(4\sqrt{3} + 3\sqrt{7})x - 3y + 18 + 6\sqrt{21} = 0$

(d) None of these

226. $P(\sqrt{2}, \sqrt{2})$ is a point on the circle $x^2 + y^2 = 4$ and Q is another point on the circle such that arc $PQ = \frac{1}{4} \times \text{circumference}$. The coordinates of Q are

(a) $(-\sqrt{2}, -\sqrt{2})$

(b) $(\sqrt{2}, -\sqrt{2})$

(c) $(-\sqrt{2}, \sqrt{2})$

(d) None of these

227. If a line passing through the point $(-\sqrt{8}, \sqrt{8})$ and making an angle 135° with x-axis cuts the circle $x = 5 \cos \theta$, $y = 5 \sin \theta$ at points A and B, then length of the chord AB is [Bihar CEE 1999]

(d) $2\sqrt{5}$

228. Equation of chord AB of circle $x^2 + y^2 = 2$ passing through P (2, 2) such that PB/PA = 3, is given by

(c) $y-2=\sqrt{3}(x-2)$ (a) x = 3y(d) None of these **(b)** x = y

229. If a chord of the circle $x^2 + y^2 = 8$ makes equal intercepts of length a on the coordinate axes, then

(a) |a| < 8

(b) $|a| < 4\sqrt{2}$

(c) |a| < 4

(d) |a| > 4

Chord of Contact

Basic Level

230. The distance between the chords of contact of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is

(a) $g^2 + f^2$

(b) $\frac{1}{2}(g^2 + f^2 + c)$ (c) $\frac{1}{2} \cdot \frac{g^2 + f^2 + c}{\sqrt{g^2 + f^2}}$ (d) $\frac{1}{2} \cdot \frac{g^2 + f^2 - c}{\sqrt{g^2 + f^2}}$

231. If the straight line x - 2y + 1 = 0 intersects the circle $x^2 + y^2 = 25$ in points *P* and *Q*, then the coordinates of the point of intersection of tangents drawn at *P* and *Q* to the circle $x^2 + y^2 = 25$ are

(a) (25, 50)

(b) (-25, -50)

(c) (-25, 50)

(d) (25, -50)

232. If the chord of contact of tangents drawn from the point (h, k) to the circle $x^2 + y^2 = a^2$ subtends a right angle at the centre, then

(a)
$$h^2 + k^2 = a^2$$

(b)
$$2(h^2 + k^2) = a^2$$

(c)
$$h^2 - k^2 = a^2$$

(d)
$$h^2 + k^2 = 2a$$

233. The chord of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to the circle $x^2 + y^2 = 1$ pass through the point [IIT 1997]

Advance Level

234. If the tangents are drawn to the circle $x^2 + y^2 = 12$ at the point where it meets the circle $x^2 + y^2 - 5x + 3y - 2 = 0$, then the point of intersection of these tangents is

(c)
$$(6, -18/5)$$

- (d) None of these
- **235.** A tangent to the circle $x^2 + y^2 = 1$ through the point (0, 5) cuts the circle $x^2 + y^2 = 4$ at A and B. The tangents to the circle $x^2 + y^2 = 4$ at A and B meet at C. The coordinates of C are

(a)
$$\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$$

(a)
$$\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$$
 (b) $\left(\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$

(c)
$$\left(-\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$$

- (d) None of these
- **236.** Tangents drawn from (2, 0) to the circle $x^2 + y^2 = 1$ touch the circle at A and B. Then

(a)
$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

(b)
$$A = \left(-\frac{1}{2}, \frac{-\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

(c)
$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

$$A = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

Equation of a Chord whose Middle point is given

Basic Level

237. The equation of the chord of the circle $x^2 + y^2 = a^2$ having (x_1, y_1) as its mid-point is [IIT 1983; MP PET 1986]

(a)
$$xy_1 + yx_1 = a^2$$

(b)
$$x_1 + y_1 = a$$

(c)
$$xx_1 + yy_1 = x_1^2 + y_1^2$$
 (d) $xx_1 + yy_1 = a^2$

(d)
$$xx_1 + yy_1 = a$$

238. From the origin chords are drawn to the circle $(x-1)^2 + y^2 = 1$. The equation of the locus of the middle points of these chords is

[IIT 1985; EAMCET 1991]

(a)
$$x^2 + y^2 - 3x = 0$$

(a)
$$x^2 + y^2 - 3x = 0$$
 (b) $x^2 + y^2 - 3y = 0$

(c)
$$x^2 + y^2 - x = 0$$

(c)
$$x^2 + y^2 - x = 0$$
 (d) $x^2 + y^2 - y = 0$

239. The equation to the chord of the circle $x^2 + y^2 = 9$ whose middle point is (1, -2) is

[Roorkee 1989]

(a)
$$x - 2y = 9$$

(b)
$$x - 2y - 4 = 0$$

(c)
$$x - 2y - 5 = 0$$

(d)
$$x - 2y + 5 = 0$$

240. The locus of the middle point of chords of the circle $x^2 + y^2 = a^2$ which pass through the fixed point (h, k) is

(a) $x^2 + y^2 - hx - ky = 0$ (b) $x^2 + y^2 + hx + ky = 0$

(b)
$$x^2 + y^2 + hx + ky = 0$$

(c)
$$x^2 + y^2 - 2hx - 2ky = 0$$

(c)
$$x^2 + y^2 - 2hx - 2ky = 0$$
 (d) $x^2 + y^2 + 2hx + 2ky = 0$

241. Equation of the chord of the circle $x^2 + y^2 - 4x = 0$ whose mid point is (1, 0) is

(b)
$$y = 1$$

(c)
$$x = 2$$

(d)
$$x = 1$$

242. The equation of a chord of the circle $x^2 + y^2 - 4x = 0$ which is bisected at the point (1, 1) is

(b)
$$3x - y = 2$$

(c)
$$x - 2y + 1 = 0$$

(d)
$$x - y = 0$$

243. The locus of the mid points of the chords of the circle $x^2 + y^2 - 2y = 0$ which are drawn from the origin, is **[EAMCET 199**]

(a) $x^2 + y^2 - y = 0$ (b) $x^2 + y^2 - x = 0$

(b)
$$x^2 + y^2 - x = 0$$

(c)
$$x^2 + y^2 - 2x = 0$$

(d)
$$x^2 + y^2 - x - y = 0$$

Advance Level

244.	The locus of the middle is	points of chords of the circle	$e^{x^2 + y^2 - 2x - 6y - 10} = 0$ wh	hich passes through the origin, [Roorkee 1989]
	(a) $x^2 + y^2 + x + 3y = 0$	(b) $x^2 + y^2 - x + 3y = 0$	(c) $x^2 + y^2 + x - 3y = 0$	(d) $x^2 + y^2 - x - 3y = 0$
245.	The locus of mid-point o	f the chords of the circle $x^2 + y$	$y^2 - 2x - 2y - 2 = 0$ which mak	tes an angle of 120° at the centre
	(a) $x^2 + y^2 - 2x - 2y + 1 =$	= 0	(b) $x^2 + y^2 + x + y - 1 = 0$	
	(c) $x^2 + y^2 - 2x - 2y - 1 =$	= 0	(d) None of these	
246.	If the equation of a g $3x + 4y - 15 = 0$ is	given circle is $x^2 + y^2 = 36$,	then the length of the cho	ord which lies along the line
	(a) $3\sqrt{6}$	(b) $2\sqrt{3}$	(c) $6\sqrt{3}$	(d) None of these
247.	The locus of the mid-po	ints of a chord of the circle x^2	$^2 + y^2 = 4$ which subtends a	right angle at the origin is
	(a) $x + y = 2$	(b) $x^2 + y^2 = 1$	(c) $x^2 + y^2 = 2$	(d) $x + y = 1$
248.	-	as of the middle point of a characteristic point of intersection of the case. (b) $x - y = 2$		x + y) such that the pair of lineslly inclined to the x-axis is(d) None of these
249.	The locus of the mid-po	int of chords of length 2 <i>l</i> of th	ne circle $x^2 + y^2 = a^2$ is	[Rajasthan PET 1998]
	(a) $x^2 + y^2 = l^2 - a^2$	(b) $x^2 + y^2 = l^2 + a^2$	(c) $x^2 + y^2 = a^2 - 2l^2$	(d) $x^2 + y^2 = a^2 - l^2$
			Diameter of a	Circle and Director Circle
		Basic	Level	
250.	The equation of the dire	ector circle of the circle $x^2 + y$	$y^2 = 16$ is	
	(a) $x^2 + y^2 = 8$	(b) $x^2 + y^2 = 32$	(c) $x^2 + y^2 = 64$	(d) $x^2 + y^2 = 4$
251.	If $y = 2x + k$ is a diameter	er of the circle $2(x^2 + y^2) + 3x$	+4y-1=0, then the value of	k is
	(a) 1/2	(b) - 1/2	(c) 1	(d) - 1
252.		meter of the circle $x^2 + y^2 - 2x$	+4y = 0 passing through the	origin is [Rajasthan PET 1991]
	(a) $x + 2y = 0$	(b) $x - 2y = 0$	(c) $2x + y = 0$	(d) $2x - y = 0$
253.	-	f intersection of perpendicula	x r tangents to the circle x^2 +	
	(a) A circle passing thre	-	(b)	A circle of radius 2a
	(c) A concentric circle of		(d) None of these	
254.	=	r circle of the circle $x^2 + y^2 = 0$		[Ranchi BIT 1990]
	(a) $x^2 + y^2 = 4a^2$	(b) $x^2 + y^2 = \sqrt{2} a^2$	(c) $x^2 + y^2 - 2a^2 = 0$	(d) None of these

Advance Level

255. The equation of the diameter of the circle $3(x^2 + y^2) - 2x + 6y - 9 = 0$ which is perpendicular to the line 2x + 3y = 12 is

- (a) 3x 2y = 3
- (b) 3x 2y + 1 = 0
- (c) 3x 2y = 9
- (d) None of these

256. A point on the line x = 3 from which the tangents drawn to the circle $x^2 + y^2 = 8$ are at right angles is

- (a) $(3, -\sqrt{7})$
- (b) $(3, \sqrt{23})$
- (c) $(3, \sqrt{7})$
- (d) $(3, -\sqrt{23})$

Pole and Polar w.r.t. a Circle

Basic Level

		Basic	Level	
257.	The coordinates of pole	of line $lx + my + n = 0$ with responding	pect to circle $x^2 + y^2 = 1$, is	[Rajasthan PET 1987]
	(a) $\left(\frac{l}{n}, \frac{m}{n}\right)$	(b) $\left(-\frac{l}{n}, -\frac{m}{n}\right)$	(c) $\left(\frac{l}{n}, -\frac{m}{n}\right)$	(d) $\left(-\frac{l}{n}, \frac{m}{n}\right)$
258.	The equation of polar of	the point (1, 2) with respect	to the circle $x^2 + y^2 = 7$, is [3]	MNR 1973; Rajasthan PET 1983, 84]
	(a) $x - 2y - 7 = 0$	(b) $x + 2y - 7 = 0$	(c) $x - 2y = 0$	(d) $x + 2y = 0$
259.	If polar of a circle $x^2 + y$	$v^2 = a^2$ with respect to (x', y')	is $Ax + By + C = 0$, then its p	ole will be[Rajasthan PET 1984, 95]
	(a) $\left(\frac{a^2A}{-C}, \frac{a^2B}{-C}\right)$	(b) $\left(\frac{a^2A}{C}, \frac{a^2B}{C}\right)$	(c) $\left(\frac{a^2C}{A}, \frac{a^2C}{B}\right)$	(d) $\left(\frac{a^2C}{-A}, \frac{a^2C}{-B}\right)$
260.	Polar of origin (0, 0) wi	th respect to the circle $x^2 + y^2$	$x^2 + 2\lambda x + 2\mu y + c = 0$ touches c	ircle $x^2 + y^2 = r^2$ if [Rajasthan PET 19]
	(a) $c = r(\lambda^2 + \mu^2)$	(b) $r = c(\lambda^2 + \mu^2)$	(c) $c^2 = r^2 (\lambda^2 + \mu^2)$	(d) $r^2 = c^2 (\lambda^2 + \mu^2)$
261.	The polar of the point (5	$(5, -1/2)$ w.r.t. circle $(x-2)^2 + y$	$e^{2} = 4$ is	[Rajasthan PET 1996]
	(a) $5x - 10y + 2 = 0$	(b) $6x - y - 20 = 0$	(c) $10x - y - 10 = 0$	(d) $x - 10y - 2 = 0$
262.	The pole of the line $2x +$	$-3y = 4$ w.r.t. circle $x^2 + y^2 = 6$	4 is	[Rajasthan PET 1996]
	(a) (32, 48)	(b) (48, 32)	(c) (- 32, 48)	(d) (48, - 32)
263.	The pole of the straight	line $x + 2y = 1$ with respect to	the circle $x^2 + y^2 = 5$ is	[Rajasthan PET 2000, 01]
	(a) (5, 5)	(b) (5, 10)	(c) (10, 5)	
264.	The polars drawn from	$(-1, 2)$ to the circles $S_1 \equiv x^2 +$	$y^2 + 6y + 7 = 0$ and $S_2 = x^2$	$+y^{2} + 6x + 1 = 0$, are [Rajasthan PET 26]
	(a) Parallel	-	-	(d) Intersect at a point
265.		cle be $x^2 + y^2 = a^2$. If $h^2 + k^2 - a^2 = a^2$		
tange	(a) Polar line of the points from (h, k) to the cir	nt (h, k) with respect to the ci	rcle (b)	Real chord of contact of the
tange		nt to the circle from the point	(h, k)	(d) None of these
266.		-3y = 50 with respect to the ci		[Rajasthan PET 1993]
	(a) (16, 12)	(b) (- 16, 12)	(c) (12, 16)	(d) (- 16, - 12)
267.	The equation of the pola	ar of the point (4, 4) with resp	ect to the circle $(x-1)^2 + (y-1)^2$	$(-2)^2 = 0$ is
	(a) $3x + 2y = 7$	(b) $3x + 2y + 8 = 0$	(c) $3x - 2y = 8$	(d) $7x + 5y = 8$
268.				f[MP PET 1984; BIT Ranchi 1990] The point is outside the
circle	-	ne en ele	(0)	The point is outside the
	(c) The point is not insi		(d) Never	
269.	The pole of the line $9x +$	-4y = 28 with respect to the cir	rcle $x^2 + y^2 = 16$ is	[Rajasthan PET 1994]
	(a) (36/7, 9/7)	(b) (36/7, 16/7)	(c) (16/7, 36/7)	(d) None of these
270.	= =	- 2, 3) <i>w.r.t.</i> the circle $x^2 + y^2$		jasthan PET 1996; EAMCET 1996]
	(a) $x = 0$	(b) $y = 0$	(c) $x = 1$	(d) $y = 1$
271.	-			nen that line will touch[Rajasthan PE
	(a) $x^2 + y^2 = 4c^2$	(b) $x^2 + y^2 = c^2 / 9$	(c) $x^2 + y^2 = c^2 / 4$	(d) $x^2 + y^2 = 2c^2$

Advance Level

272. If the polar of a point (p, q) with respect to the circle $x^2 + y^2 = a^2$ touches the circle $(x - c)^2 + (y - d)^2 = b^2$, then

(a)
$$b^2(p^2+q^2)=(a^2-cp-qd)^2$$

(b)
$$b^2 (p^2 + q^2) = (a^2 - cq - dp)^2$$

(c)
$$a^2(p^2+q^2)=(b^2-cp-dq)^2$$

(d) None of these

273. The equation of a circle is $x^2 + y^2 - 4x + 2y - 4 = 0$. With respect to the circle

(a) The pole of the line
$$x - 2y + 5 = 0$$
 is (1, 1)

- (b) The chord of contact of real tangents from (1, 1) is the line x 2y + 5 = 0
- (c) The polar of the point (1, 1) is x 2y + 5 = 0
- (d) None of these

System of Cricles

[MP PET 1988]

[MP PET 1990]

[Ranchi BIT 1985]

Basic Level

274. If d is the distance between the centres of two circles, r_1 , r_2 are their radii and $d = r_1 + r_2$, then

- (a) The circles touch each other externally
- (b) The circles touch each other internally

(c) The circles cut each other

(d) The circles are disjoint

One circle lies completely

- (a) (4, 3) and (4, -3) (b) (4, -3) and (-4, -3)
- **275.** The points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 8x + 7 = 0$ are

(b)

- (c) (-4, 3) and (4, 3) (d) (4, 3) and (3, 4)
- **276.** Circles $x^2 + y^2 2x 4y = 0$ and $x^2 + y^2 8y 4 = 0$
- (b) Touch externally

- (a) Touch internally
- (c) Intersect each other at two distinct points
- (d) Do not intersect each other at any point
- 277. For the given circles $x^2 + y^2 6x 2y + 1 = 0$ and $x^2 + y^2 + 2x 8y + 13 = 0$, which of the following is true[MP PET 1989]
- - (a) One circle lies inside the other
- outside the other
- (d) They touch each other
- (c) Two circle intersect in two points **278.** The two circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 8y = 0$

- - (a) Touch each other internally
- Touch each other externally (b)
 - (c) Do not touch each other
- None of these (d)
- **279.** Circles $x^2 + y^2 2x 4y = 0$ and $x^2 + y^2 8y 4 = 0$
- (b)

(a) Touch each other internally (c) Cuts each other at two points

- (d) None of these
- **280.** A tangent to the circle $x^2 + y^2 = 5$ at the point (1, -2) to the circle $x^2 + y^2 8x + 6y + 20 = 0$
 - [IIT 1975]

Touch each other externally

- (b) Cuts at real points
- (c) Cuts at imaginary points (d)
- None of these

[IIT 1973]

281. If the circles $x^2 + y^2 - 9 = 0$ and $x^2 + y^2 + 2ax + 2y + 1 = 0$ touch each other, then a = 0

[Roorkee 1998]

- (a) 4/3

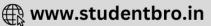
(d) 4/3

282. The equation of the circle through the point of intersection of the circles $x^2 + y^2 - 8x - 2y + 7 = 0$, $x^{2} + y^{2} - 4x + 10y + 8 = 0$ and (3, -3) is [AI CBSE 1981]

- (a) $23x^2 + 23y^2 156x + 38y + 168 = 0$
- (b) $23x^2 + 23y^2 + 156x + 38y + 168 = 0$

(c) $x^2 + y^2 + 156x + 38y + 168 = 0$

(d) None of these



			Circle	and System of C	Circles 135
283.	The locus of the centre	of a circle which touches ext	ernally the circle $x^2 + y^2 - 6$	5x - 6y + 14 = 0 and	also touches
	the <i>y</i> -axis is given by the	e equation		[IIT 199	93; DCE 2000]
	(a) $x^2 - 6x - 10y + 14 = 0$	(b) $x^2 - 10x - 6y + 14 = 0$	(c) $y^2 - 6x - 10y + 14 = 0$	(d) $y^2 - 10x - 6y$	+14 = 0
284.	Circles $x^2 + y^2 + 2gx + 2fy$	$= 0 \text{ and } x^2 + y^2 + 2g'x + 2f'y = 0$	touch externally, if [MI	P PET 1994; Karnata	ıka CET 2003]
	(a) $f'g = g'f$	(b) $fg = f'g'$	(c) $f'g' + fg = 0$	(d) $f'g + g'f = 0$	
285.	The circle passing throu	gh point of intersection of the	e circle $S = 0$ and the line $P = 0$	= 0 is [Rajastl	nan PET 1995]
	(a) $S + \lambda P = 0$	(b) $S - \lambda P = 0$	(c) $\lambda S + P = 0$	(d) $P - \lambda S = 0$	
286.	The two circles $x^2 + y^2 -$	$-2x - 3 = 0$ and $x^2 + y^2 - 4x - 6$	y-8=0 are such that		[MNR 1995]
	(a) They touch each other	er (b)	They intersect each other	(c) One lies insid	de the other(d)
287.	Consider the circles x^2	$+(y-1)^2 = 9, (x-1)^2 + y^2 = 25.$ T	hey are such that	[1	EAMCET 1994]
	(a) These circles touch	each other	(b) One of these circles lie	es entirely inside t	he other
	(c) Each of these circles	lies outside the other	(d) They intersect in two	points	
288.	Find the equation of the	circle passing through the p	oint (- 2, 4) and through the	he points of inters	section of the
	circle $x^2 + y^2 - 2x - 6y + 6$	6 = 0 and the line $3x + 2y - 5 =$	0	[Rajastl	nan PET 1996]
	(a) $x^2 + y^2 + 2x - 4y - 4 =$	= 0	(b) $x^2 + y^2 + 4x - 2y - 4 = 0$		
	(c) $x^2 + y^2 - 3x - 4y = 0$		(d) $x^2 + y^2 - 4x - 2y = 0$		
289.	If the circles $x^2 + y^2 = 4$,	$x^2 + y^2 - 10x + \lambda = 0 $ touch ext	ternally, then λ is equal to		[AMU 1999]
	(a) - 16	(b) 9	(c) 16	(d) 25	
290.	The condition that the ci	ircle $(x-3)^2 + (y-4)^2 = r^2$ lies	entirely within the circle x^2	$+y^2 = R^2$, is	[AMU 1999]
	(a) $R + r \le 7$	(b) $R^2 + r^2 < 49$	(c) $R^2 - r^2 < 25$	(d) $R - r > 5$	
291.	If the centre of a circle	which passing through the	points of intersection of the	circles $x^2 + v^2 - 6$	6x + 2y + 4 = 0

and $x^2 + y^2 + 2x - 4y - 6 = 0$ is on the line y = x, then the equation of the circle is [Rajasthan PET 1991; Roorkee 1989]

(a)
$$7x^2 + 7y^2 - 10x + 10y - 11 = 0$$

(b)
$$7x^2 + 7y^2 + 10x - 10y - 12 = 0$$

(c)
$$7x^2 + 7y^2 - 10x - 10y - 12 = 0$$

(d)
$$7x^2 + 7y^2 - 10x - 12 = 0$$

292. The equation of a circle passing through points of intersection of the circles $x^2 + y^2 + 13x - 3y = 0$ and $2x^2 + 2y^2 + 4x - 7y - 25 = 0$ and point (1, 1), is [Rajasthan PET 1988, 89; IIT 1983]

(a)
$$4x^2 + 4y^2 - 30x - 10y - 25 = 0$$

(b)
$$4x^2 + 4y^2 + 30x - 13y - 25 = 0$$

(c)
$$4x^2 + 4y^2 - 17x - 10y + 25 = 0$$

(d) None of these

293. The equation of circle passes through the points of intersection of circles $x^2 + y^2 - 6x + 8 = 0$ and $x^2 + y^2 = 6$ and point (1, 1) is

[Rajasthan PET 1988; IIT 1980; MP PET 2002]

(a)
$$x^2 + y^2 - 6x + 4 = 0$$
 (b) $x^2 + y^2 - 3x + 1 = 0$ (c) $x^2 + y^2 - 4y + 2 = 0$

(b)
$$x + y - 3x + 1 = 0$$

(c)
$$x + y - 4y + 2 = 0$$

(d) None of these

294. The equation of the circle having its centre on the line x + 2y - 3 = 0 and passing through the points of intersection of the circles $x^{2} + y^{2} - 2x - 4y + 1 = 0$ and $x^{2} + y^{2} - 4x - 2y + 4 = 0$, is [MNR 1992]

(a)
$$x^2 + y^2 - 6x + 7 = 0$$

(b)
$$x^2 + y^2 - 3y + 4 = 0$$

(a)
$$x^2 + x^2 = 2x + 1$$

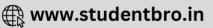
(a)
$$x^2 + y^2 - 6x + 7 = 0$$
 (b) $x^2 + y^2 - 3y + 4 = 0$ (c) $x^2 + y^2 - 2x - 2y + 1 = 0$ (d) $x^2 + y^2 + 2x - 4y + 4 = 0$

295. A circle of radius 5 touches another circle $x^2 + y^2 - 2x - 4y - 20 = 0$ at (5, 5), then its equation is [IIT 1979]

(a)
$$x^2 + y^2 + 18x + 16y + 120 = 0$$

(b)
$$x^2 + y^2 - 18x - 16y + 120 = 0$$

(c)
$$x^2 + y^2 - 18x + 16y + 120 = 0$$



296. The points of intersection of circles $x^2 + y^2 = 2ax$ and $x^2 + y^2 = 2by$ are

	(a) (0, 0), (a, b)	(b) (0, 0), $\left(\frac{2ab^2}{a^2+b^2}, \frac{2ba^2}{a^2+b^2}\right)$)(c) (0, 0), $\left(\frac{a^2+b^2}{a^2}, \frac{a^2+b^2}{b^2}\right)$	$\left(\frac{g^2}{g^2}\right)$ (d) None of these
297.		circle which passes tl		
	$2x^2 + 2y^2 + 4x - 7y - 25 = 0$	and whose centre lies on 13		[DCE 2001]
	(a) $x^2 + y^2 + 30x - 13y - 2x$	5 = 0	(b) $4x^2 + 4y^2 + 30x - 13y -$	25 = 0
	(c) $2x^2 + 2y^2 + 30x - 13y $	-25 = 0	(d) $x^2 + y^2 + 30x - 13y + 25$	= 0
298.	The two circles $x^2 + y^2 -$	$2x + 6y + 6 = 0$ and $x^2 + y^2 - 5$	x + 6y + 15 = 0	[Karnataka CET 2001]
	(a) Intersect	(b) Are concentric	(c) Touch internally	(d) Touch externally
299.	The equation of the $x^2 + y^2 - 6x + 8y - 16 = 0$,		- 3) and the points	common to the two circles
	(a) $x^2 + y^2 - 4x + 6y + 24 =$	= 0	(b) $2x^2 + 2y^2 + 3x + y - 20 =$	= 0
	(c) $3x^2 + 3y^2 - 5x - 7y - 19$	9 = 0	(d) None of these	
300.	The circles whose equation	ons are $x^2 + y^2 + c^2 = 2ax$ and	$1x^{2} + v^{2} + c^{2} = 2bv$ will touch	one another externally if
	(a) $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$		(c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	(d) None of these
301.	The equation of the circle	e and its chord are respectiv	ely $x^2 + y^2 = a^2$ and $x \cos \alpha$	$+y\sin\alpha=p$. The equation of the
	circle of which this chord			
	(a) $x^2 + y^2 - 2px \cos \alpha - 2$	$py \sin \alpha + 2p^2 - a^2 = 0$	(b) $x^2 + y^2 - 2px \cos \alpha - 2p$	$\sin \alpha + p^2 - a^2 = 0$
	(c) $x^2 + y^2 + 2px \cos \alpha + 2$	$py \sin \alpha + 2p^2 - a^2 = 0$	(d) None of these	
302.	The two circles $x^2 + y^2 -$	$5 = 0$ and $x^2 + y^2 - 2x - 4y - 15$	5 = 0	
	(a) Touch each other ext	ernally	(b)	Touch each other internally
	(c) Cut each other orthog	gonally	(d)	Do not intersect
303.	The circles $x^2 + y^2 - 4x -$	$6y - 12 = 0$ and $x^2 + y^2 + 4x + 6$	6y + 4 = 0	[EAMCET 1991]
	(a) Touch externally	(b) Touch internally	(c) Intersect at two point	s (d) Do not intersect
304.	The equations of two circ	cles are $x^2 + y^2 - 26y + 25 = 0$	and $x^2 + y^2 = 25$ then	
ortho	(a) They touch each othe	er	(b)	They cut each other
	(c) One circle is inside the	he other circle	(d) None of these	
305.	The equation of a circle	C_1 is $x^2 + y^2 - 4x - 2y - 11 = 0$. A circle C_2 of radius 1 rd	olls on the outside of the circle
		re of C_2 has the equation	- -	[MP PET 2003]
	(a) $x^2 + y^2 - 4x - 2y - 20 =$	= 0	(b) $x^2 + y^2 + 4x + 2y - 20 =$	0
	(c) $x^2 + y^2 - 3x - y - 11 = 0$	0	(d) None of these	
306.	The locus of the centr	es of the circles passing t	through the intersection of	of the circles $x^2 + y^2 = 1$ and
	$x^2 + y^2 - 2x + y = 0$ is		•	
	(a) A line whose equation	n is x + 2y = 0	(b) A line whose equation	is $2x - y = 1$
	(c) A circle		(d) A pair of lines	
307.	If circles $x^2 + y^2 = 9$ and	$x^2 + y^2 + 8y + c = 0 $ touch each	h other, then c is equal to	[Rajasthan PET 1994]
	(a) 15	(b) - 15	(c) 16	(d) - 16

CLICK HERE

[AMU 2000]

308. The locus of the centre of the circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches the y-axis, is

(a)
$$x^2 - 6x - 10y + 14 = 0$$
 (b) $x^2 - 10x - 6y + 14 = 0$ (c) $y^2 - 6x - 10y + 14 = 0$ (d) $y^2 - 10x - 6y + 14 = 0$

(b)
$$x^2 - 10x - 6y + 14 =$$

(c)
$$y^2 - 6x - 10y + 14 =$$

(d)
$$y^2 - 10x - 6y + 14 = 0$$

309. The circle S_1 with centre $C_1(a_1, b_1)$ and radius r_1 touches externally the circle S_2 with centre $C_2(a_2, b_2)$ and radius r_2 . If the tangent at their common point passes through the origin, then

(a)
$$(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r_1^2 + r_2^2$$

(b)
$$(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = r_1^2 - r_2^2$$

(c)
$$(a_1^2 - b_2^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$$

(d)
$$(a_1^2 - b_1^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$$

Advance Level

310. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = r^2$ intersect each other in two distinct points if

[IIT 1994]

(a)
$$r < 2$$

(b)
$$r > 8$$

(c)
$$2 < r < 8$$

(d)
$$2 \le r \le 8$$

311. The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $x^2 + y^2 = 9$ is [AIEEE 2002]

(a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

(b)
$$\left(\frac{1}{2}, -\sqrt{2}\right)$$

(c)
$$\left(\frac{3}{2},\frac{1}{2}\right)$$

(d)
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

312. The locus of the centre of the circles which touch both the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = 4ax$ externally has

(a)
$$12(x-a)^2 - 4y^2 = 3a$$

(a)
$$12(x-a)^2 - 4y^2 = 3a^2$$
 (b) $9(x-a)^2 - 5y^2 = 2a^2$ (c) $8x^2 - 3(y-a)^2 = 9a^2$ (d) None of these

(c)
$$8x^2 - 3(y - a)^2 = 9a^2$$

313. Tangents *OP* and *OQ* are drawn from the origin *O* to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. Then the equation of the circumcircle of the triangle OPQ is

(a)
$$x^2 + y^2 + 2gx + 2fy = 0$$
 (b) $x^2 + y^2 + gx + fy = 0$ (c) $x^2 + y^2 - gx - fy = 0$ (d) $x^2 + y^2 - 2gx - 2fy = 0$

(c)
$$x^2 + y^2 - gx - fy = 0$$

(d)
$$x^2 + y^2 - 2gx - 2fy = 0$$

314. If the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ cuts $x^2 + y^2 + 4x + 3y + 2 = 0$ in A and B, then the equation of the circle on AB

(a)
$$x^2 + y^2 + x + 3y + 3 = 0$$
 (b) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$ (c) $x^2 + y^2 + x + 6y + 1 = 0$ (d) None of these

(c)
$$x^2 + y^2 + x + 6y + 1 = 0$$

315. The equation of the smallest circle passing through the intersection of the line x + y = 1 and the circle

(a)
$$x^2 + y^2 + x + y - 8 = 0$$
 (b) $x^2 + y^2 - x - y - 8 = 0$ (c) $x^2 + y^2 - x + y - 8 = 0$

(b)
$$x^2 + y^2 - x - y - 8 = 0$$

(c)
$$x^2 + y^2 - x + y - 8 =$$

316. $x^2 + y^2 + 2(2k+3)x - 2ky + (2k+3)^2 + k^2 - r^2 = 0$ represents the family of circles with centres on the line [SCRA 1999]

(a)
$$x - 2y - 3 = 0$$

(b)
$$x + 2y - 3 = 0$$

(c)
$$x - 2y + 3 = 0$$

(d)
$$x + 2y + 3 = 0$$

Common Tangents to Two Circles

Basic Level

317. The number of common tangents to the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ is [MP PET 1995]

(a) 1

318. The number of common tangents to two circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 8x + 12 = 0$ is

[EAMCET 1990]

[EAMCET 1994]

(d) 4

319. The number of common tangents to the circles $x^2 + y^2 - x = 0$, $x^2 + y^2 + x = 0$ is

(d) 3

(d) x = 3

320. The circles $x^2 + y^2 = 9$ and $x^2 + y^2 - 12y + 27 = 0$ touch each other. The equation of their common tangent is [MP PET 199]

(a) 4v = 9

(b) y = 3

(c) y = -3

CLICK HERE

- **321.** The two circles $x^2 + y^2 2x + 6y + 6 = 0$ and $x^2 + y^2 5x + 6y + 15 = 0$ touch each other. The equation of their common tangent is [KCET 1993; DCE 1999]
 - (a) x = 3

- (c) 7x 12y 21 = 0
- **322.** The number of common tangents to the circle $x^2 + y^2 + 2x + 8y 23 = 0$ and $x^2 + y^2 4x 10y + 19 = 0$ is
 - (a) 1

(b) 2

(c) 3

Advance Level

- **323.** If a>2b>0 then the positive value of m for which $y=mx-b\sqrt{1+m^2}$ is a common tangent to $x^2+y^2=b^2$ and $(x-a)^2 + y^2 = b^2$, is [IIT Screening 2002]
 - (a) $\frac{2b}{\sqrt{a^2 4b^2}}$ (b) $\frac{\sqrt{a^2 4b^2}}{2b}$
- (c) $\frac{2b}{a-2b}$
- (d) $\frac{b}{a-2h}$
- **324.** Two circles, each of radius 5, have a common tangent at (1, 1) whose equation is 3x + 4y 7 = 0. Then their centres are
 - (a) (4, -5), (-2, 3)
- (b) (4, -3), (-2, 5)
- (c) (4, 5), (-2, -3)
- (d) None of these
- 325. The number of common tangents to the circles one of which passes through the origin and cuts off intercepts 2 from each of the axes, and the other circle has the line segment joining the origin and the point (1, 1) as a diameter, is

- **326.** The range of values of λ for which the circles $x^2 + y^2 = 4$ and $x^2 + y^2 4\lambda x + 9 = 0$ have two common tangents, is

 - (a) $\lambda \in \left[-\frac{13}{8}, \frac{13}{8} \right]$ (b) $\lambda > \frac{13}{8}$ or $\lambda < -\frac{13}{8}$ (c) $1 < \lambda < \frac{13}{8}$
- (d) None of these
- **327.** Two circles with radii r_1 and r_2 , $r_1 > r_2 \ge 2$, touch each other externally, if ' θ ' be the angle between the direct common tangents, then

 - (a) $\theta = \sin^{-1}\left(\frac{r_1 + r_2}{r_1 r_2}\right)$ (b) $\theta = 2\sin^{-1}\left(\frac{r_1 r_2}{r_1 + r_2}\right)$ (c) $\theta = \sin^{-1}\left(\frac{r_1 r_2}{r_1 + r_2}\right)$

Common Chord of Two Circles

Basic Level

- **328.** The common chord of the circle $x^2 + y^2 + 4x + 1 = 0$ and $x^2 + y^2 + 6x + 2y + 3 = 0$ is
- [MP PET 1991]

- (b) 5x + y + 2 = 0
- (c) 2x + 2y + 5 = 0
- **329.** The equation of line passing through the points of intersection of the circles $3x^2 + 3y^2 2x + 12y 9 = 0$ and $x^{2} + y^{2} + 6x + 2y - 15 = 0$, is
 - [IIT 1986; UPSEAT 1999]

- (a) 10x 3y 18 = 0

- (b) 10x + 3y 18 = 0 (c) 10x + 3y + 18 = 0 (d) None of these
- **330.** Length of the common chord of the circles $x^2 + y^2 + 5x + 7y + 9 = 0$ and $x^2 + y^2 + 7x + 5y + 9 = 0$ is [Kurukshetra CEE 1996] (b) 8
- **331.** The length of the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is [MP PET 2000]
 - (b) $2\sqrt{2}$

- (d) 3/2
- (c) $3\sqrt{2}$ **332.** If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then
 - (a) 2g(g-g')+2f(f-f')=c-c'

(b) 2g'(g-g')+2f'(f-f')=c'-c

(c) 2g'(g-g')+2f'(f-f')=c-c'

- (d) 2g(g-g')+2f(f-f')=c'-c.
- 333. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then the length of the common chord of these two circles is

(a)
$$2\sqrt{g^2 + f^2 - c}$$
 (b) $2\sqrt{g'^2 + f'^2 - c'}$

(b)
$$2\sqrt{g'^2+f'^2-c'}$$

(c)
$$2\sqrt{g^2+f^2+c}$$

(d)
$$2\sqrt{g'^2+f'^2+c'}$$

334. The equation of the circle described on the common chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2y = 0$ as diameter is

(a)
$$x^2 + y^2 + x - y = 0$$

(b)
$$x^2 + y^2 - x - y = 0$$

(a)
$$x^2 + y^2 + x - y = 0$$
 (b) $x^2 + y^2 - x - y = 0$ (c) $x^2 + y^2 - x + y = 0$ (d) $x^2 + y^2 + x + y = 0$

(d)
$$x^2 + y^2 + x + y = 0$$

335. The distance of the point (1, 2) from the common chord of circles $x^2 + y^2 - 2x + 3y - 5 = 0$ $x^{2} + y^{2} + 10x + 8y - 1 = 0$ is

[EAMCET 1990]

(a) 2 units

(b) 3 units

(c) 4 units

(d) None of these

Advance Level

336. The length of common chord of the circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y-b)^2 = b^2$ is

[MP PET 1989]

(a)
$$2\sqrt{a^2+b^2}$$

(b)
$$\frac{ab}{\sqrt{a^2+b^2}}$$

(c)
$$\frac{2ab}{\sqrt{a^2+b^2}}$$

- (d) None of these
- **337.** The length of common chord of the circles $x^2 + y^2 = 12$ and $x^2 + y^2 4x + 3y 2 = 0$, is

(a)
$$4\sqrt{2}$$

(b)
$$5\sqrt{2}$$

(c)
$$2\sqrt{2}$$

- (d) $6\sqrt{2}$
- **338.** The line L passes through the points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line L, is [Bihar CEE 1994]

- (d) o
- **339.** The common chord of $x^2 + y^2 4x 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

- **340.** The length of the common chord of the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ is

(a)
$$\sqrt{c^2 - (a-b)^2}$$

(b)
$$\sqrt{4c^2-2(a-b)^2}$$

(c)
$$\sqrt{2c^2 - (a-b)^2}$$

- **341.** If the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ touch each other, then

(a)
$$a = b \pm 2c$$

(b)
$$a = b \pm \sqrt{2}c$$

(c)
$$a = b \pm c$$

- (d) None of these
- **342.** If the circle $c_1: x^2 + y^2 = 16$ intersects another circle c_2 of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to 3/4, the coordinates of the centre of $\,c_2\,$ are [IIT 1988]

(a)
$$\left(-\frac{9}{5}, \frac{12}{5}\right), \left(\frac{9}{5}, -\frac{12}{5}\right)$$
 (b) $\left(-\frac{9}{5}, -\frac{12}{5}\right), \left(\frac{9}{5}, \frac{12}{5}\right)$ (c) $\left(\frac{12}{5}, -\frac{9}{5}\right), \left(-\frac{12}{5}, \frac{9}{5}\right)$ (d) None of these

(c)
$$\left(\frac{12}{5}, -\frac{9}{5}\right), \left(-\frac{12}{5}, \frac{9}{5}\right)$$

- **343.** The common chord of the circle $x^2 + y^2 + 6x + 8y 7 = 0$ and a circle passing through the origin, and touching the line y = x, always passes through the point

- (d) None of these
- **344.** The equation of the circle drawn on the common chord of circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ as a diameter is

(a)
$$x^2 + y^2 + \frac{2ab^2}{a^2 + b^2}x + \frac{2a^2b}{a^2 + b^2}y + c = 0$$

(b)
$$x^2 + y^2 + \frac{ab^2}{a^2 + b^2}x + \frac{a^2b}{a^2 + b^2}y + c = 0$$

(c)
$$(a^2 + b^2)(x^2 + y^2) + 2ab(bx + ay) + c = 0$$

(d) None of these

345.	The	equation	of	the	circle	drawn	on	the	common	chord	of	circles	$(x-a)^2$	$+y^2$	$=a^2$	and	x^2 -	+(y-b)	$)^2 = b^2$	as
	dian	neter is																		

[EAMCET 1989]

(a)
$$(a^2 + b^2)(x^2 + y^2) = 2ab(bx + ay)$$

(b)
$$(a^2 + b^2)(x^2 + y^2) = 2ab(ax + by)$$

(c)
$$(a^2 - b^2)(x^2 + y^2) = 2ab(bx - ay)$$

(d)
$$(a^2 - b^2)(x^2 + y^2) = 2ab(ax - by)$$

Angle of Intersection of Two Circles and Orthogonal System of Circles

Basic Level

346.	If a circle passes through the point (1, 2) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the equation of the
	locus of its centre is

[MNR 1992]

(a)
$$x^2 + y^2 - 3x - 8y + 1 = 0$$

(b)
$$x^2 + y^2 - 2x - 6y - 7 = 0$$

(c)
$$2x + 4y - 9 = 0$$

(d)
$$2x + 4y - 1 = 0$$

347. The locus of centre of a circle passing through (p, q) and cuts orthogonally to circle $x^2 + y^2 = k^2$, is [IIT 1988]

(a)
$$2px + 2qy - (p^2 + q^2 + k^2) = 0$$

(b)
$$2px + 2qy - (p^2 - q^2 + k^2) = 0$$

(c)
$$x^2 + y^2 - 3px - 4qy + (p^2 + q^2 - k^2) = 0$$

(d)
$$x^2 + y^2 - 2px - 3qy + (p^2 - q^2 - k^2) = 0$$

348. Two given circles $x^2 + y^2 + ax + by + c = 0$ and $x^2 + y^2 + dx + ey + f = 0$ will intersect each other orthogonally, only

(a)
$$a+b+c=d+e+f$$
 (b) $ad+be=c+f$

(b)
$$ad + be = c + f$$

(c)
$$ad + be = 2c + 2f$$
 (d) $2ad + 2be = c + f$

(d)
$$2ad + 2be = c + f$$

349. Two circles $S_1 = x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $S_2 = x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ cut each other orthogonally, then

[Rajasthan PET 1995]

(a)
$$2g_1g_2 + 2f_1f_2 = c_1 + c_2$$
 (b) $2g_1g_2 - 2f_1f_2 = c_1 + c_2$ (c) $2g_1g_2 + 2f_1f_2 = c_1 - c_2$ (d) $2g_1g_2 - 2f_1f_2 = c_1 - c_2$

(c)
$$2g_1g_2 + 2f_1f_2 = c_1 - c_2$$

$$2g_1g_2 - 2J_1J_2 - c_1 - c_2$$

350. If the circles of same radius a and centres at (2, 3) and (5, 6) cut orthogonally, then a =[EAMCET 1988]

(c)
$$3$$

351. The circles $x^2 + y^2 + 4x + 6y + 3 = 0$ and $2(x^2 + y^2) + 6x + 4y + c = 0$ will cut orthogonally, if c equals [Kurukshetra CEE 1996]

352. The equation of a circle that intersects the circle $x^2 + y^2 + 14x + 6y + 2 = 0$ orthogonally and whose centre is (0, 2) is [MP PET 1998]

(a)
$$x^2 + y^2 - 4y - 6 = 0$$
 (b) $x^2 + y^2 + 4y - 14 = 0$ (c) $x^2 + y^2 + 4y + 14 = 0$ (d) $x^2 + y^2 - 4y - 14 = 0$

(b)
$$x^2 + y^2 + 4y - 14 = 0$$

(c)
$$x^2 + y^2 + 4y + 14 = 0$$

(d)
$$x^2 + y^2 - 4y - 14 = 0$$

353. If the circles $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^2 + y^2 + 2ky + k = 0$ intersect orthogonally, then k is [IIT Screening 2000]

(a) 2 or
$$-\frac{3}{2}$$
 (b) - 2 or $\frac{3}{2}$

(b) - 2 or
$$\frac{3}{2}$$

(c) 2 or
$$\frac{3}{2}$$

(c)
$$2 \text{ or } \frac{3}{2}$$
 (d) $-2 \text{ or } \frac{3}{2}$

354. The locus of the centre of circle which cuts the circles $x^2 + y^2 + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$ orthogonally is

[UPSEAT 2001]

(a)
$$12x + 8y + 5 = 0$$

(b)
$$8x + 12y + 5 = 0$$

(b)
$$8x + 12y + 5 = 0$$
 (c) $8x - 12y + 5 = 0$

355. If the two circles $2x^2 + 2y^2 - 3x + 6y + k = 0$ and $x^2 + y^2 - 4x + 10y + 16 = 0$ cut orthogonally, then the value of k is

356. The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle of

(a)	$\frac{\pi}{6}$
1	

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{2}$$

357. The equation of the circle having its centre on the line x + 2y - 3 = 0 and passing through the point of intersection of the circles $x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2 - 4x - 2y + 4 = 0$ is [MNR 1992]

(a)
$$x^2 + y^2 - 6x + 7 = 0$$

(a)
$$x^2 + y^2 - 6x + 7 = 0$$
 (b) $x^2 + y^2 - 3x + 4 = 0$

(c)
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

(c)
$$x^2 + y^2 - 2x - 2y + 1 = 0$$
 (d) $x^2 + y^2 + 2x - 4y + 4 = 0$

358. The two circles $x^2 + y^2 - 2x - 2y - 7 = 0$ and $3(x^2 + y^2) - 8x + 29y = 0$

[Karnataka CET 1993]

- (a) Touch externally
- (c) Cut each other orthogonally

(b) Touch internally

Do not cut each other

- 359. The locus of the centres of circles passing through the origin and intersecting the fixed circle $x^2 + y^2 - 5x + 3y - 1 = 0$ orthogonally is
 - (a) A straight line of the slope $\frac{3}{5}$

(b)

A circle

- (c) A pair of straight lines
- **360.** The angle of intersection of circles $x^2 + y^2 + 8x 2y 9 = 0$ and $x^2 + y^2 2x + 8y 7 = 0$ is
- None of these

- **361.** If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its
 - (a) $2ax 2by (a^2 + b^2 + 4) = 0$

(b) $2ax + 2by - (a^2 + b^2 + 4) = 0$

(c) $2ax - 2by + (a^2 + b^2 + 4) = 0$

- (d) $2ax + 2by + (a^2 + b^2 + 4) = 0$
- **362.** The value of λ , for which the circle $x^2 + y^2 + 2\lambda x + 6y + 1 = 0$, intersects the circle $x^2 + y^2 + 4x + 2y = 0$ orthogonally is

[MP PET 2004]

(a)
$$\frac{-5}{2}$$

(c)
$$\frac{-11}{8}$$

(d)
$$\frac{-5}{4}$$

Advance Level

- **363.** The equation of a circle which cuts the three circles $x^2 + y^2 3x 6y + 14 = 0$, $x^2 + y^2 x 4y + 8 = 0$ and $x^2 + y^2 + 2x 6y + 9$ orthogonally is
 - (a) $x^2 + y^2 2x 4y + 1 = 0$

(b) $x^2 + y^2 + 2x + 4y + 1 = 0$

(c) $x^2 + y^2 - 2x + 4y + 1 = 0$

- (d) $x^2 + y^2 2x 4y 1 = 0$
- **364.** The coordinates of the centre of the circle which intersects circles $x^2 + y^2 + 4x + 7 = 0$, $2x^2 + 2y^2 + 3x + 5y + 9 = 0$ and $x^2 + y^2 + y = 0$ orthogonally are
 - (a) (-2, 1)
- (b) (-2, -1)
- (c) (2, -1)
- **365.** The members of a family of circles are given by the equation $2(x^2 + y^2) + \lambda x (1 + \lambda^2)y 10 = 0$. The number of circles belonging to the family that are cut orthogonally by the fixed circle $x^2 + y^2 + 4x + 6y + 3 = 0$ is
 - (a) 2

(b) 1

(c) o

(d) None of these

Radical Axis and Radical Centre

Basic Level

366. The equation of radical axis of the circles $x^2 + y^2 + x - y + 2 = 0$ and $3x^2 + 3y^2 - 4x - 12 = 0$, is

[Rajasthan PET 1984, 85, 86, 91, 2000]

(a)
$$2x^2 + 2y^2 - 5x + y - 14 = 0$$

(b)
$$7x - 3y + 18 = 0$$

(c)
$$5x - y + 14 = 0$$

(d) None of these

- **367.** The radical centre of three circles described on the three sides of a triangle as diameter is **[EAMCET 1994]**
 - (a) The orthocentre
- (b) The circumcentre
- (c) The incentre of the triangle

(d)

368. The locus of centre of the circle which cuts the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0$

orthogonally is

[Karnataka CET 1991]

(a) An ellipse

(b) The radical axis of the given circles

(c) A conic

- (d) Another circle
- **369.** The coordinates of the radical centre of the three circles $x^2 + y^2 4x 2y + 6 = 0$, $x^2 + y^2 4x 2y + 6y = 0$. $x^{2} + y^{2} - 12x + 2y + 30 = 0$ are
 - (a) (6, 30)
- (b) (0, 6)

- (c) (3, 0)
- (d) None of these
- 370. The equation of radical axis of the circles $2x^2 + 2y^2 7x = 0$ and $x^2 + y^2 4y 7 = 0$ is [Rajasthan PET 1987, 89, 93, 96]
 - (a) 7x + 8y + 14 = 0
- **(b)** 7x 8y + 14 = 0
- (c) 7x 8y 14 = 0
- (d) None of these
- **371.** The radical centre of the circles $x^2 + y^2 16x + 60 = 0$, $x^2 + y^2 12x + 27 = 0$, $x^2 + y^2 12y + 8 = 0$ is [Rajasthan PET 2000]
 - (a) (13, 33/4)
- (b) (33/4, -13)
- (c) (33/4, 13)
- (d) None of these
- 372. The radical axis of two circles and the line joining their centres are

[Karnataka CET 2001]

[Rajasthan PET 2001]

(a) Parallel

- (b) Perpendicular
- (c) Neither parallel, nor perpendicular
- (d) Intersecting, but not fully perpendicular
- **373.** Radical axis of the circles $3x^2 + 3y^2 7x + 8y + 11 = 0$ and $x^2 + y^2 3x 4y + 5 = 0$ is
 - (d) x + 10y 8 = 0

- (a) x + 10y + 2 = 0
- (b) x + 10y 2 = 0
- **374.** Two tangents are drawn from a point P on radical axis to the two circles touching at Q and R respectively then

(c) x + 10y + 8 = 0

- triangle formed by joining PQR is [UPSEAT 2002] (c) Right angled (a) Isosceles (b) Equilateral (d) None of these

- 375. Equation of radical axis of the circles $x^2 + y^2 3x 4y + 5 = 0$ and $2x^2 + 2y^2 10x 12y + 12 = 0$ is [Rajasthan PET 2003]
 - (a) 2x + 2y 1 = 0
- (b) 2x + 2y + 1 = 0
- (c) x + y + 7 = 0
- (d) x + y 7 = 0
- **376.** If the circle $x^2 + y^2 + 6x 2y + k = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x 6y 15 = 0$, then k = [EAMCET 200]

(b) - 21

(b) 6

(c) 23

- (d) 23
- 377. The locus of a point which moves such that the tangents from it to the two circles $x^2 + y^2 5x 3 = 0$ and $3x^2 + 3y^2 + 2x + 4y - 6 = 0$ are equal, is given by
 - (a) $2x^2 + 2y^2 + 7x + 4y 3 = 0$

(b) 17x + 4y + 3 = 0

(c) $4x^2 + 4y^2 - 3x + 4y - 9 = 0$

- (d) 13x 4y + 15 = 0
- **378.** Two equal circles with their centres on x and y axes will possess the radical axis in the following form

- (a) $ax by \frac{a^2 + b^2}{4} = 0$ (b) $2gx 2fy + g^2 f^2 = 0$ (c) $g^2x + f^2y g^4 f^4 = 0$ (d) $2g^2x + 2f^2y g^4 f^4 = 0$
- 379. The equations of two circles are $x^2 + y^2 + 2\lambda x + 5 = 0$ and $x^2 + y^2 + 2\lambda y + 5 = 0$. P is any point on the line x y = 0. If PA and PB are the lengths of the tangents from P to the two circles and PA = 3 then PB is equal to (d) None of these
- **380.** The locus of a point from which the lengths of the tangents to the circles $x^2 + y^2 = 4$ and $2(x^{2} + y^{2}) - 10x + 3y - 2 = 0$ are equal is

CLICK HERE

- (a) A straight line inclined at $\pi/4$ with the line joining the centres of the circles
- (b) A circle
- (c) An ellipse
- (d) A straight line perpendicular to the line joining the centres of the circles
- **381.** The equation of the radical axis of circles $x^2 + y^2 + 6x = 0$ and $x^2 + y^2 + 4x 2y + 5 = 0$ is
 - (a) 2x + 2y = 5
- (b) 4x 2y 5 = 0
- (c) 2x + 2y + 5 = 0
- (d) None of these
- **382.** The equation of the radical axis of circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ is
 - (a) x + y = 0
- (b) x y = 0
- (c) $x + y = c^2$
- (d) None of these

Miscellaneous problems

Basic Level

- 383. If three circles are such that each intersects the remaining two, then their radical axes
- (b) Are coincident
- (c) Concurrent
- **384.** If a circle S_1 bisects the circumference of another circle S_2 , then their radical axis
 - (a) Passes through the centre of S_1

- (b) Passes through the centre of S_2
- (c) Bisects the line joining their centres
- (d) None of these
- 385. If two circles intersect a third circle orthogonally, then their radical axis
 - (a) Touches the third circle

Passes through the centre of

- the third circle
 - (c) Does not intersect the third circle
- (d) None of these

- **386.** The radical axis of two circles
 - (a) Always intersects both the circles
- (b) Intersects only one circle
- (c) Bisects the line joining their centres
- (d) Bisects every common tangent to those circles
- **387.** If the radical axis of circles $x^2 + y^2 6x 8y + p = 0$ and $x^2 + y^2 8x 6y + 14 = 0$ passes through the point (1, -1), then *p* is equal to
 - (a) 1

- **388.** The radical centre of circles $x^2 + y^2 + 2ax + c = 0$, $x^2 + y^2 + 2by + c = 0$ and $x^2 + y^2 + 2ax + 2by + c = 0$ is
- (b) (a, o)

- **389.** The equation of the radical axis of circles $7x^2 + 7y^2 7x + 14y + 18 = 0$ and $4x^2 + 4y^2 7x + 8y + 20 = 0$ is

- (a) 21x 68 = 0
- (b) 3y 1 = 0
- (c) $3x^2 + 3y^2 + 6y 6 = 0$ (d) None of these

Advance Level

- **390.** If the radical axis of the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^{2} + y^{2} + 2x + 2y + 1 = 0$, then

 - (a) $g = \frac{3}{4}$ and $f \neq 2$ (b) $g \neq \frac{3}{4}$ and f = 2 (c) $g = \frac{3}{4}$ and f = 2
- **391.** If (1, 2) is the radical centre of circle $x^2 + y^2 3x 6y + d_1 = 0$, $x^2 + y^2 x 4y + d_2 = 0$ $x^{2} + y^{2} + 2x - 6y + d_{3} = 0$, then
 - (a) $d_1 + d_3 = 5$
- (b) $d_1 d_3 = 5$
- (c) $d_1 + d_3 = 10$
- (d) $d_1 d_3 = 10$
- **392.** x = 1 is the equation of the radical axis of two circle which intersect orthogonally. If the equation of one of these circles is $x^2 + y^2 = 4$, then the equation of the other is [EAMCET 1983]
 - (a) $x^2 + y^2 8x 4 = 0$ (b) $x^2 + y^2 8x + 4 = 0$
- (c) $x^2 + y^2 + 8x + 4 = 0$ (d) None of these

Co-axial System of Circles and Limiting Points

Rasic Level

	(a) (-2, -4)	(b) $\left(\frac{3}{25}, \frac{4}{25}\right)$	(c) $\left(-\frac{3}{25}, -\frac{4}{25}\right)$	(d) $\left(\frac{4}{25}, \frac{3}{25}\right)$
394.	If $(3, \lambda)$ and $(5, 6)$ are c (a) 2	conjugate points with respect (b) - 2	to circle $x^2 + y^2 = 3$, then λ (c) 3	equals [Rajasthan PET 1998] (d) 4
		Advan	ace Level	
395.		0 1	the coaxial system	of circles containing
	$x^2 + y^2 - 6x - 6y + 4 = 0,$	$x^2 + y^2 - 2x - 4y + 3 = 0$ is		[EAMCET 1987]
	(a) (-1,1)	(b) (-1, 2)	(c) (-2, 1)	(d) (-2, 2)
396.	The co-axial system of	circles given by $x^2 + y^2 + 2gx$	+c = 0 for $c < 0$ represents.	[Karnataka CET 2004]
	(a) Intersecting circles(c) Touching circles		(b) Non intersecting circle(d) Touching or non-inter	
	(c) Touching circles		(u) Touching of non-inter	Miscellaneous problems
				Miscettaneous problems
		Basic	c Level	
397.	The limit of the perime	ter of the regular n -gons insc	ribed in a circle of radius R	as $n \to \infty$ is [MP PET 2003]
_	(a) $2\pi R$	(b) πR	(c) 4 R	(d) πR^2
398.	A, B, C and D are the p	oints of intersection with the	e coordinate axes of the line	s $ax + by = ab$ and $bx + ay = ab$,
	(a) A, B, C, D are conc	yclic	(b)	A, B, C, D form a
paral	lelogram	ombus	(4)	Name of those
	(c) <i>A, B, C, D</i> form a rh		(d)	None of these
		Advan	ace Level	
399.		1), (4, 5) and (0, c) are concy	rclic, then c is equal to	[MNR 1982]
	(a) $-1, -\frac{3}{14}$	(b) $-1, -\frac{14}{3}$	(c) $\frac{14}{3}$, 1	(d) None of these
400.	Line $Ax + By + C = 0$ cut	ts circle $x^2 + y^2 + ax + by + c =$	0 in P and Q and the line	A'x + B'y + C' = 0 cuts the circle
		in <i>R</i> and <i>S</i> . If the four points	s P, Q, R and S are concyclic,	then
	$D = \begin{vmatrix} a - a' & b - b' & C - C' \\ A & B & c \\ A' & B' & c' \end{vmatrix}$	=		[Roorkee 1986]
401	(a) 1	(b) 0	(c) - 1	(d) None of these
401.	(a) $\frac{a^2}{3}$	(b) $\frac{2a^2}{3}$	(c) $\frac{a^2}{6}$	(d) $\frac{a^2}{12}$
401.	A circle is inscribed in a	an equilateral triangle of side	e a, the area of any square in	scribed in the circle is [IIT 1994]

393. Origin is a limiting point of a coaxial system of which $x^2 + y^2 - 6x - 8y + 1 = 0$ is a member. The other limiting point

				,
402.		points of intersection of the langle subtended by the arc F		x - y = 2 if intersects these lines a [MP PET 1998]
radiu	(a) 180°	(b) 90°	(c) 120°	(d) Depends on centre o
		formed by joining the origin	to the points of interse	ction of the line $x\sqrt{5} + 2y = 3\sqrt{5}$ and
400.	circle $x^2 + y^2 = 10$ is	formed by Johning the origin	to the points of interse	[Roorkee 1998
	(a) 3	(b) 4	(c) 5	(d) 6
404.		· · · -		ntre. Then the locus of the centroi
	of the $\triangle PAB$ as P moves of	on the circle is		[IIT Screening 2001
	(a) A parabola	(b) A circle		(d) A pair of straight lines
405.	-	e circle $x^2 + y^2 - 2x + 4y - 93 =$	0 with its sides parallel to	o the coordinate axes. The coordinate
	of its vertices are (a) (-6, -9), (-6, 5), (3)	8 0) (8 5)	(b) (-6, 9), (-6, -5)	(% 0) (% 5)
	(c) (-6, -9), (-6, 5), (3	8, 9), (8, 5)	(d) (-6, -9), (-6, 5)	
406.	If the lines $a_1x + b_1y + c_1$	$= 0$ and $a_2x + b_2y + c_2 = 0$ cut	the coordinate axes in o	concyclic points, then
	(a) $a_1 a_2 = b_1 b_2$		(c) $a_1b_2 = a_2b_1$	
407.	Let <i>P</i> be a point on the	circle $x^2 + y^2 = 9$, Q a point of	on the line $7x + y + 3 = 0$,	and the perpendicular bisector o
	PQ be the line $x - y + 1 = 0$	0 . Then the coordinates of P	are	
	(2) (2, 0)	(b) (0, 3)	(c) $\left(\frac{72}{25}, -\frac{21}{25}\right)$	(d) $\begin{pmatrix} 72 & 21 \end{pmatrix}$
	(a) (3, 0)	(6) (0, 3)	$\left(\frac{1}{25}, -\frac{1}{25}\right)$	$\left(\frac{1}{25},\frac{1}{25}\right)$
408.				ut the triangle OAB . The distance d n respectively. Then the diamete
	(a) $m(m+n)$	(b) $n(m+n)$	(c) $m-n$	(d) None of these
409.	If the circle $x^2 + y^2 + 2gx$	x + 2fy + c = 0 is touched by $y = 0$	= x at P such that $OP = 6$	$5\sqrt{2}$, then the value of c is
410.	(a) 36 One of the diameters of	(b) 144 the circle circumscribing the	(c) 72 e rectangle $ABCD$ is $4y =$	(d) None of these $x + 7$. If A and B are the points (-3)
	4) and (5, 4) respectivel (a) 16 sq. units	y, then the area of the rectan (b) 24 sq. units	ngle is (c) 32 sq. units	(d) None of these
411.	The maximum number o	f points with rational coordi	nates on a circle whose o	centre is $(\sqrt{3},0)$ is
	(a) One	(b) Two	(c) Four	(d) Infinite
412.	vertices have the coordin	nates (-1 , 0) and (1, 0) and v	which lies wholly above	
		(b) $x^2 + y^2 - \sqrt{3}y - 1 = 0$		
413.				n the circle C_k , a particle moves
			**	particle moves to $\mathit{C}_{\mathit{k}+1}$ in the radia
		of the particle continues in ction of the <i>x</i> -axis for the fire		cle starts at $(1, 0)$. If the particle then n is
	(a) 7	(b) 6	(c) 2	(d) None of these
414.		t the point $(-2, -1)$ gets ref is the circle. The equation of the (b) $4x + 3y + 11 = 0$	_	at (0, -1) to the circle $x^2 + y^2 = 1$ incident ray moved is (d) None of these
415.			·	ne squares of its distances from the
				on is $r(< a)$ then the locus of P is
	(a) A pair of straight lin		(b)	An ellipse
	(c) A circle of radius \sqrt{a}		(d)	An ellipse of major axis
and r	ninor axis r	•	\ - -/	
		is $x^2 + y^2 = 4$. A regular hex	kagon is inscribed in the	e circle whose one vertex is (2, 0)
	Then a consecutive verte	ex has the coordinates		
	(a) $(\sqrt{3}, 1)$	(b) $(1, -\sqrt{3})$	(c) $(\sqrt{3}, -1)$	(d) $(1, \sqrt{3})$

- **417.** A point $P(\sqrt{3}, 1)$ moves on the circle $x^2 + y^2 = 4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along which the point moves after leaving the circle is
 - (a) $y = \sqrt{3}x + 4$
- (b) $\sqrt{3}y = x + 4$
- (c) $\sqrt{3}y = x 4$
- (d) $y = \sqrt{3}x 4$
- **418.** If the curves $ax^2 + 4xy + 2y^2 + x + y + 5 = 0$ and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$ intersect at four concyclic points then the value of a is
 - (a) 4

(b) -4

(c) 6

(d) - 6

Assignment (Basic and Advance level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b	a	b	a	b	b	a	b	b	С	С	a	a	a	С	a	d	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	c	a	b	c	a	d	С	b	d	c	d	a	a,b,	a	b	a	d	d	b
u		u			u	u			u		u	a	c	u		u	u	u	U
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	a	d	С	b	С	d	b	С	b	a	a	С	a	a	С	b	a	С	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	С	a	С	b	С	С	a	a	a	a	b	С	d	b	d	a	b	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	a	С	b	b	С	a	b	С	b	a	d	b	a	a	b	b	d	С	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	d	a	b	b	b	a	a	a	С	d	С	b	b	a	b,c	b	С	a	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
a,c	b	d	b	b	a	b	a	a	d	d	a	b	d	С	a	d	b	d	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	b	С	b	b	b	b	С	b	a	С	С	d	a	b	b	a	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	С	b	a,d	b	b	b	a	С	b	С	С	С	b,c	С	d	С	a	a	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	b	b	b	b	b	a	С	С	b	a	a	a	С	С	a	a,c	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	d	С	С	a	a	С	a,c	b	a	С	b	С	С	a	С	a	С	С	С
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
b	b	b	С	b	b,c	a	b	С	d	С	d	b	С	a	c,d	С	С	С	a

146	146 Circle and System of Circles																		
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	a	d	a	С	С	a	d	b	a	С	С	С	a	a,c	b	b	a	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	a	b	d	a	a	a	С	b	a	b	a	a,c	a	a	a	d	a	a	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a,d	a	d	a	a,b,c d	b	b	b	a	d	С	b	b	a	b	a	b	С	b	С
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	b	С	b	a	a	a	d	b	С	b	a	b	b	b	d	С	С	d	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	С	a	С	b	b	b	a	a	d	b	С	b	d	a	С	a	d	d	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
b	a	С	a	a	С	a	С	a	С	b	d	a	С	С	d	a	С	d	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b	d	a	b	a	b	С	b	d	С	d	b	b	a	a	d	b	b	С	d
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
a	b	С	b	b	d	b	a	a	С	b	b	b	b	a	a	a	a	С	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418		
С	a	С	b	a	a	a,d	d	С	С	b	a	a	b	С	b	b	b		

